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Abstract 
This paper provides an overview of the challenges associated with the stationkeeping of floating systems in frontier 
deepwater, and the range of solutions to address them. The paper presents the use of existing technologies, materials and 
components, and compare and evaluates them to the use of novel materials, new and possibly not field proven technologies, 
and design approaches. 

The paper provides a high-level design basis and strategies for the stationkeeping system design, identifying key drivers 
in the selection of the stationkeeping system. The paper then utilizes an example of an FPSO system moored in a range of 
water depths to illustrate the current capabilities of conventional technologies and strategies to improve performance. 

 
Introduction 
Over the past 10 years the Oil and Gas Industry has successfully explored and produced from water depths up to 2,500 
meters, with the Shell Stones FPSO predicted to have first oil in 2016 in approximately 2,900 meters water depth in the 
Lower Tertiary region of the Gulf of Mexico. Most of the major offshore oil and gas production regions in the world have 
production facilities installed in water depths between 1,000 to 2,000 meters, using a variety of floating production units, 
riser and stationkeeping systems. This is close to the water depth typically defined as an upper bound for “ultra-deep” water 
(3,000 meters). Today the industry looks ahead to the next frontier which can be broadly described to have a water depth 
range of 3,000 to 4,500 meters (roughly 10,000 to 15,000 feet). 

The success of the pre-salt fields offshore Brazil (2,000 to 2,500 meters) has led to a lot of interest in deepwater for both 
the Eastern and Western Atlantic area ranging from Guyana to Uruguay in the Western Atlantic and Ivory Coast to Angola, 
and even Namibia and South Africa in the Eastern Atlantic. In addition, frontier deepwater regions have been identified in the 
Western Gulf of Mexico (maximum water depth of 4,400 meters) and offshore Eastern India, and Malaysia. Currently 
exploration is planned / ongoing in water depths of 3,000 to 4,000 meters in many of these regions. 

The objective of this paper is to take a high level view of the challenges associated with stationkeeping in these frontier 
deepwater regions, and to identify the key drivers that can impact the selection and performance of the stationkeeping system. 
The main function of the stationkeeping system is to provide offset control for various design environmental conditions, 
based on the requirements of the riser and umbilical system to stay within certain excursion envelopes specified. This ensures 
the integrity of the riser system and allows for safe operation of the unit. The emphasis on stationkeeping design is to ensure 
sufficient redundancy is provided so that as a minimum a single point of failure does not result in exceedance the design 
offsets, and that failure would not result in an “unzipping” of the mooring system, leading to catastrophic failure. 

Two major items that have a significant impact in the selection of the stationkeeping system and its performance 
requirements are the host floating production facility and the riser system that is utilized. As can be seen in ultra-deepwater a 
range of systems have been utilized successfully from Tension Leg Platforms at the lower end of the water depth range to 
Spars, FPSOs, and Semisubmersibles at the deeper range. Looking ahead to the frontier deepwater regions identified, it is 
expected that the majority of the systems will utilize an FPSO, or in some cases an FPSO/FSO in combination with another 
production facility. The Gulf of Mexico may be an exception as Semisubmersibles and Spar production systems have been 
successfully deployed in water depths up to 2,500 meters.  

Though a number of the topics discussed in this paper, are applicable to all moored floating systems, the focus of this 
paper will be in stationkeeping systems for FPSOs that lend themselves to a wide range of stationkeeping technologies and 
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experienced by all floaters. This is an important point to consider when using stiffer materials for the stationkeeping system 
for FPSOs. 

FPSOs have been used extensively in cyclone or hurricane regions for over two decades with an excellent track record. 
The majority of these systems have been designed to be disconnectable, allowing for a rapid disconnection within 6 to 12 
hours and to reconnect once the storm has passed. For these regions using this approach also puts less demands on the 
stationkeeping system as it does not need to experience the 100-year cyclone or hurricane conditions with the FPSO attached, 
and on the riser system as it does not need to experience large offsets coupled with extreme wave frequency motions. In the 
Gulf of Mexico the design seastate for the FPSO connected has a significant wave height of 8 meters compared to the 100-
year hurricane with significant wave height of 15 meters. The trade-off is that the buoy that disconnects with the mooring and 
risers needs to be sized to provide sufficient net buoyancy to support the mooring and riser systems at typical depths of 30 to 
70 meters below mean water level (MWL). These systems usually require integrated engineering between the turret mooring 
system and the riser system to ensure an optimized system. 

In hurricane or cyclone environments the disconnectable turret mooring system provides a means of optimizing the 
capacity of the stationkeeping system and also reduces the requirements on the riser system as they do not remain connected 
to the vessel in the 100-year environment. Hybrid riser systems are a complementary system to this stationkeeping 
technology as the payload on the turret is similar with increases in water depth as the majority of the riser weight is supported 
by an independent structure as described in a later section. The use of a hybrid system limits the impact of riser content 
density to that contained in the flexible jumpers thus minimizing the impact on disconnected buoy depth. 
 
Dynamically Positioned FPSOs 
Dynamic positioning is another stationkeeping technology that is suitable for FPSO systems, and would seem to be an 
excellent option for stationkeeping in the range of water depths being considered in this paper. This technology has already 
been applied to deepwater drill ships for several years, with the latest generation of drill ships being capable of operating in 
3,000 meters of water, and remains on station in 10-year hurricane conditions. These drill ships also have hydrocarbon 
processing and storage capability up to 15,000 bbls/day. 

The MV Seillean was used as a dynamically positioned production vessel in the North Sea for 8 years and then relocated 
to Brazil in a water depth of almost 1,900 meters. In addition, a number of dynamically positioned FPSOs have been used as 
well test systems, or early production systems in various locations in the world [Lovie 2009]. Currently the Helix Producer is 
the first dynamically positioned FPSO in the Gulf of Mexico with a disconnectable riser buoy that is also supported by a light 
mooring system to provide stationkeeping for the risers once the riser buoy is disconnected from the vessel. 

Thruster-assisted mooring systems for FPSOs have been used for almost twenty years, with a number of facilities in the 
North Sea having center mounted turrets that require heading control to provide the desired weathervaning ability. FPSOs 
like the Terra Nova FPSO were designed with thrusters to allow for disconnection, sail away, and reconnection to the buoy 
without support vessels, and these thrusters were also used to provide heading control and some offset reduction in the 
extreme storm conditions. Some of these FPSOs were designed with redundancy for the thrusters and also to allow for 
maintenance of the thrusters within the hull of the vessel. This allows for the FPSO to continue production while the thrusters 
are maintained in-situ. 

Duggal et al. [2004] have discussed the study of a large dynamically positioned FPSO for the Gulf of Mexico, for water 
depths of 2,500 meters. This particular system was designed to produce 125,000 bbls of oil per day and to support 12 risers 
and 4 umbilicals with a storage capacity of 1 million barrels. The system was designed to stay on station in seastates up to the 
10-year hurricane condition and have a disconnectable riser buoy to support the risers after disconnect. The study included 
both performance and cost estimates and one major conclusion was that the threshold from a cost perspective was for water 
depths around 2,500 meters. This would indicate that it could be a viable and cost effective option in the frontier water depths 
being considered in this paper but this would need to be weighed against the long-term reliability of such a system, and 
whether the regulatory environment would allow such a concept as a permanent production facility. Based on the experiences 
obtained in the industry, it should be effective as an early production / extended well test system that would have a relatively 
short deployment (say less than 7 years) compared to a permanent facility required to stay on station for over twenty years. In 
most cases the disconnectable riser buoy would need to have a supplemental mooring system to help provide stability to the 
riser system and this would negate the advantages of a pure dynamically positioned FPSO which would need any mooring 
system expense and installation. This approach would need to be compared to a traditional passively moored disconnectable 
FPSO like the Stones and Cascade and Chinook FPSOs in the Gulf of Mexico. 
 
Key Factors Influencing the Stationkeeping System in Frontier Deepwater 
In moving to frontier deepwater, the key factors that influence the selection of the stationkeeping system are similar to the 
drivers that influenced the decision for the existing production facilities in 2,000 to 3,000 meters. The focus here is to capture 
some key lessons learnt, to identify some parameters that can impact the stationkeeping system selected, and to highlight 
those that need better definition before finalizing the design. The main parameters discussed here are: 
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 Water depth, metocean conditions, and seabed details 
 Floater type 
 Stationkeeping design philosophy 
 Riser system 
 Mooring system components 
 Installation requirements 
 Regulatory environment 

 
As mentioned earlier the focus of this paper will be for stationkeeping technology as applied to FPSO systems. This also 

serves as a good example since FPSOs have generally utilized a wide range of technologies for both stationkeeping and riser 
systems and a subset of these technologies have been used for the other deepwater floating systems. Thus the discussion for 
the rest of the paper is mainly focused on FPSO systems and the experience gained from a number of deepwater installations. 
 
Water Depth, Metocean Conditions and Seabed Details 
As described in the introduction the focus of this paper is on water depths ranging from 3,000 to 4,500 meters in various 
regions of the world. As many of these frontier deepwater regions are adjacent to shallower water regions in which 
production has occurred for several years the general metocean conditions are well known. For the Western Atlantic the 
environment ranges from relatively mild and hurricane regions to the North and swell dominated and stormy environments to 
the South with high average seastates and 100-year return-period conditions approaching 12 meters significant. Certain 
regions are also susceptible to large ocean circulation currents that can affect the weathervaning and motion performance of 
the turret moored FPSOs and also have some impact on offloading and operability. 

Along the Eastern Atlantic the environment ranges from relatively benign in the North but subject to severe squalls that 
typically drive the maximum offsets and loads of the stationkeeping system, to much higher average waves and extreme 
seastates as further South off Namibia and South Africa. East India and the Gulf of Mexico are subject to high intensity 
hurricanes, while offshore Malaysia the seastate is best described as moderately severe. Typically wind and wave data is 
readily available (or can be developed) in most regions of the world, but the challenge has been the definition of the current 
environment (intensity and direction) in frontier regions (where minimal offshore activity has taken place) especially when 
influenced by the global circulation that typically needs to be developed by a measurement program in advance of the 
production facility design. 

Another issue that needs to be addressed during the concept selection or pre-FEED phase is the proper characterization of 
the soil and the seabed bathymetry. Generally high resolution geophysical data is available from the exploration phase but 
many times the surveys are not focused on determining specific properties of the soil required for foundation design or proper 
layout of the mooring and riser systems until the FEED stage. At times surprises have been known to occur that cause major 
changes to the basis of design. This has ranged from the soil shear strength being greatly reduced from that observed in 
shallower water, to improper identification of canyons and unstable surface slopes that are not suitable for anchor placement 
and installation. In many cases the detailed geotechnical data required to size the anchors is only available once the project is 
in EPIC phase and lower strengths can lead to large impacts on anchor sizes and weights, and the resulting equipment 
required for installation. In discussing stationkeeping systems in these deep waters reducing vessel offsets can also result in 
large increases in anchor loads that also impacts anchor sizing. 
 
Riser Systems 
A variety of riser systems have been utilized as the industry has moved to deeper water depths and the advancements have 
followed two paths: extension of technologies used in shallower water, and development of novel riser designs that allow 
easier extension to deepwater. Typically riser systems can be defined as “coupled” and “uncoupled” systems, with the 
coupled systems referring to the direct attachment of the risers to the floater, resulting in the FPSO supporting the riser, while 
an uncoupled system uses an intermediate independent support for the majority of the riser, and then attaches to the floater 
using short flexible jumpers. 
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around 1,200 to 1,400 meters. The typical maximum intact offset for this system is around 5% of water depth as 
well. 

 Buoyancy Supported Riser System has been recently installed at the Guara-Lula Field in 2,130 meters, 
connected to a spread moored FPSO. The concept consists of a large buoyancy tank tethered to the seabed with a 
number of tethers that is used to support up to 27 steel catenary risers. Flexible jumper hoses connect the SCRs 
to the vessel. The system in Brazil has been designed for a maximum intact offset of 6.5% of water depth. 
 

In all of these systems the depth of the support buoy or upper end of the steel risers is on the order of 250 to 300 meters, 
positioned about 300 meters away from the floater hang-off point. The flexible jumpers are designed for offsets ranging from 
5% to 7% of water depth in 1,500 to 2,300 meters of water, though the range could probably be increased by setting a 
different elevation and position of the support buoy system, which essentially would increase the cost of the riser system. 

It is beyond the scope of this paper to evaluate the effectiveness of this system in water depths up to 4,500 meters, but the 
assumption is being made that the system would be installed at a similar elevation and offset location that what was used in 
the shallower water depths, with jumpers of similar length. In this case we should assume that the allowable offset would be 
around the same magnitude as what we would have for the shallower water depths so the stationkeeping allowable extreme 
offset would range from 3 to 5% of water depth for the 4,500 meter case. This sets a benchmark for controlling extreme 
offsets in these frontier water depths based on the riser system. 
 
Anchor Leg System Components and Design 
Most floating systems use a passive stationkeeping system based on anchor legs comprised of various components. In 
shallow water, chain in a catenary configuration is used with a large length on the seafloor, and as the water depth increases 
catenary moorings are based on combinations of wire rope and chain. The restoring force from the mooring comes from the 
catenary shape and the weight of the mooring components (geometric stiffness), and the axial stiffness of the components.  
Typically as the water depth approaches 1,000 meters polyester rope has been used as the primary component, typically 
terminated with chain at both the floater interface and at the anchor. The mooring systems are either in a taut or semi-taut 
configuration, with the majority of the restoring force generated from the axial stiffness of the polyester rope, coupled with 
some geometric stiffness from the catenary shape of the mooring. These mooring systems have now been deployed in water 
depths of almost 3,000 meters and typically offsets of 5 to 10% of water depth have been achieved for a variety of 
environmental conditions. Note that with increase in water depth and the reduction in extreme offset requirements a common 
approach is to increase the pretension of the mooring legs. For systems with chain at the floater – anchor leg connection point 
this can lead to large increases in out-of-plane bending fatigue of the top chain at the fairlead. As a rule of thumb this 
pretension should be limited to approximately 15% of the MBL of the top chain. 

One objective of this paper is to evaluate the stationkeeping performance of conventional mooring designs for water 
depths up to 4,500 meters. In addition, the use of synthetic ropes comprised of stiffer synthetic fibers (as compared to 
polyester rope) is investigated and some general trends reported. The stiffer mooring ropes can be used to reduce vessel offset 
but the maximum dynamic loads and fatigue loads increase, resulting in a trade-off between offset, load and the associated 
costs. This is illustrated by the example at the end of the paper that studies the performance of the stationkeeping system of a 
turret-moored FPSO in various water depths up to 4,500 meters. 

 
Installation Related Requirements 
Installation of deepwater subsea, riser and mooring systems will probably require relatively high specification installation 
vessels with very large winch and crane capacity, along with large deck space and / or supply barges to install the large 
amounts of equipment required, especially for the mooring and riser systems. Though this is not a major focus of this paper it 
needs to be recognized that the cost of installation can far exceed the value of the mooring components so a major focus of 
the frontier deep mooring design needs to be on ease of installation rather than to minimize component costs. This could 
require utilizing stiffer, more expensive fiber ropes for the mooring system for offset control (with components of higher 
MBL to account for the higher loading) rather than increasing the number of legs with less expensive components as an 
example. In addition from a mooring integrity perspective the system should be designed to allow for easy adjustment or 
replacement of a mooring leg to offset the large cost of using high specification vessels in remote regions intervention and 
support activities. 

It is well documented that lifting and lowering operations in deepwater can result in large amounts of dynamic 
amplification as well as loading on the crane / winch systems and will require detailed analysis and engineering to ensure 
compatibility of existing equipment to operate efficiently in these water depths. Bruschi, et al. [2015] should provide 
additional details on some of the challenges and requirements for frontier deepwater installation. 
 
Permanent Mooring Systems for Frontier Deepwater 
Mooring systems in 4,500 meters of water will probably be required to have relatively small offsets as a percentage of water 
depth compared to systems currently installed in 2,000 to 2,500 meters. Typically for anchor leg systems offset is controlled 
by using heavy catenary mooring systems in shallow water to taut-leg systems utilizing synthetic fiber ropes in deepwater. 
Offsets in deepwater can be controlled by increasing the pretension of the anchor leg, using stiffer mooring components, or 
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using a larger number of legs. Increasing pretension / stiffer mooring components can result in higher loads on the system 
and also increased fatigue damage, while an increase in the number of anchor legs can increase the total cost of installation. 
So the mooring design needs to evaluate all of the options above to develop the optimum stationkeeping performance. 

One of the strengths of using polyester rope over steel wire rope in water depths up to 3,000 meters is that the low axial 
stiffness of the rope, the large extension to failure, and the low weight in water allow good offset control without resulting in 
high loads or fatigue damage. In addition the long-term performance of polyester rope is exceptional compared to the 
traditional steel wire and chain components, with minimal loss of strength after 15 years of service.  

For water depths approaching 4,500 meters there are probably situations where polyester is too compliant to provide the 
desired control unless the pretension is increased to where maximum mooring loads and fatigue damage become an issue. 
One alternative that has been proposed is to use synthetic ropes with a higher axial stiffness, using fibers like HMPE 
(Dyneema), Aramid (Kevlar) and Liquid Crystal Polymer (LCP, Vectran) in place of polyester rope, or use segments of these 
ropes in series with polyester segments to develop an optimum stiffness. 

This section will provide a summary of the performance of the high modulus fibers and provide some information of their 
suitability for deepwater mooring. The last section will use an example of a turret moored FPSO in 4,500 meters of water to 
demonstrate the stationkeeping performance of polyester mooring systems versus mooring systems utilizing high modulus 
fiber ropes. 
 
Synthetic Fiber Ropes 

Polyester Rope 
Polyester rope is now commonly used as a mooring component for deepwater moorings, typically exceeding 1,000 meters 

in water depth. Polyester rope was first studied in detail as a permanent mooring component in the early 1990’s [Del 
Vecchio, 1992] and first utilized in the mid 1990’s offshore Brazil. By the early 2000’s polyester rope had become a 
mainstream component for deepwater moorings as it was quickly recognized as an enabling technology to effectively provide 
stationkeeping performance in deepwater, and has been shown to have an excellent track record of long-term integrity, 
especially compared to the traditional chain and steel spiral strand components.  

Compared to steel spiral strand wire, polyester rope has a much lower weight in water, a lower axial stiffness, and much 
higher tension-tension fatigue life, allowing it to be used effectively in taut-leg mooring systems. Its low weight results in 
relative low pretensions of the anchor leg system compared to that used with wire, and its low stiffness results in reduced 
extreme and fatigue dynamic loading in the anchor leg system (including the anchor) and thus on the steel components which 
are more susceptible to fatigue damage. In addition its low weight makes it much easier to install, and as long as the 
installation is properly engineered and equipped to install the polyester system, it can be installed safely and with minimal 
risk of damage. Polyester ropes recovered after 10 to 15 years of service have shown minimal loss of the design MBL and no 
noticeable degradation of the cover or splices. It should also be noted that polyester fiber is now a commodity with a very 
large capacity of fiber available in the market place, and thus is relatively inexpensive. If there is one negative with polyester 
it is that the diameter of a polyester rope with equivalent MBL of sheathed spiral strand steel wire would be 50% greater. 
This requires large reels for the polyester rope and in many cases the capacity of the winches on board available installation 
vessels limit the lengths of continuous polyester rope segments that can be used; thus requiring the connection of shorter 
segments of polyester rope to get the desired length. For example offshore Brazil on projects for PETROBRAS, the 
installation vessel winch capacity is typically limited at 1,000 meters of 1,250 MT MBL polyester rope when each leg 
requires approximately 3,000 meters of rope. 

Synthetic fibers like polyester are visco-elastic materials and do not exhibit a linear load-elongation curve like steel. The 
properties of both the fibers and ropes have been studied extensively by the industry over the past 20 years to provide a 
description of the behavior of the rope. As described in Del Vecchio (1992) the equivalent stiffness of polyester rope is a 
function of the mean load, the load amplitude, and to a lesser extent the period of load application. In addition, polyester fiber 
has a logarithmic creep characteristic, and the rope would see permanent elongation under sustained loading due to the fibers 
bedding in (as compared to the new rope manufactured under relatively low tension). Due to the complex stiffness 
characteristics of the polyester rope it should also be noted the actual stiffness seen during stationkeeping is also a function of 
the floating host motion characteristics, and the environment. 

There are a number of standards and codes that specify tests to perform on a rope to get a set of consistent values that 
confirm the characteristics of the fiber, define elongation as a function of load history, and estimate stiffness as a function of 
mean load, amplitude, and load frequency. This is shown in Figure 3 which shows the results of a stiffness test being 
performed on a worked polyester rope. 

 It is also quite common for engineers in the industry to express the stiffness as a multiplier of the MBL of the rope. Using 
this approach the stiffness can range from a static stiffness of around 12 times MBL to a stiffness of up to 30 times MBL for 
loading of 40% to 50% of the MBL. Permanent elongation of a polyester rope when loaded to 50% of MBL for a number of 
cycles can be 3% to 4% of the unworked rope length. This obviously has implications in the analysis and design of mooring 
systems as the water depth increases. Note that polyester fiber and rope is probably the most studied material/component in 
the stationkeeping industry and the twenty year effort that has gone into this has resulted in improvements in rope design and 
termination technology to where the efficiency of the rope (based on fiber MBL) is in the order of 70% to 75% compared to 
around 50% to 60% when first utilized. 
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Figure 3. Stiffness test of polyester rope 
 
All of these factors need to be taken into account in the mooring design to ensure the proper rope characteristics are used 

in the analysis and design of the stationkeeping system and the correct “unworked” new length ropes are specified. It is also 
important to ensure that proper estimates of rope elongation due to the rope being worked during installation and during the 
life of the field are used to ensure that the installation approach or ability to adjust length of the mooring once installed are 
properly specified. This is extremely important as the water depth increases where you have several kilometers of synthetic 
rope in one anchor leg. 
 

High Modulus Fiber Ropes 
There are a number of high modulus and strength fibers that have been developed over the years in the market and have 

been used in a variety of applications in a number of industries. Currently there are four fibers that are seen to have promise 
for the offshore industry as a stiffer and lighter replacement for polyester fiber ropes when required and are seen to have an 
application as we move to water depths around 4,500 meters. 

To date, all permanently moored systems in ultra-deepwater are utilizing mooring systems with polyester rope combined 
with chain and or spiral strand wire rope. This has been seen to be effective in water depths up to 2,500 meters, and will also 
be deployed for the Stones FPSO in 2016. This seems to indicate that in most cases polyester rope moorings have been 
shown to be suitable for water depths up to approximately 3,000 meters, especially for FPSOs. 

The four fibers that have been studied for use as mooring components are: 
 

1. PEN 
2. Aramid (Kevlar) 
3. HMPE (Dyneema) 
4. LCP (Vectran) 

 
Of the 4 fibers PEN (Polyethylene Naphthalate) is a high performance member of the polyester family that results in an 

effective increase in rope stiffness of approximately 30% over a polyester rope. The other three fibers when used in rope 
constructions have an effective stiffness that is similar (with caveats) and range about 3 to 4 times that of polyester rope. 
These three fibers also have about the same weight per meter and diameter for a given break strength and for the purpose of 
this paper the ropes manufactured from fibers these are assumed to have the same stiffness and weight properties. However, 
at the fiber level the differences between the three can be quite pronounced as described in some of the references to this 
paper [Davies, et al., 2002, Del Vecchio, and da Silva, 2011, Huntley, 2011; and Haach, et al., 2011]. 

Figure 4 presents the quasi-static stiffness of a worked polyester rope and an aramid rope from [Huntley, 2011]. The load 
elongation curve helps illustrate the behavior of the synthetic ropes under load, and provide a comparison between the 
relative stiffness of the high modulus fiber ropes compared to a standard polyester rope. It is also seen that the behavior is 
similar for the two ropes and this is also true when studying the dynamic stiffness behavior as a function of mean load, load 
amplitude, and frequency. The following subsections provide additional information on the three high modulus fiber ropes 
and will not address the PEN fiber ropes though they are also a viable candidate. 
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LCP Ropes 
LCP (Liquid Crystal Polymer, Vectran) is a relatively new fiber being introduced for deepwater mooring ropes. Typically 

the properties of this fiber are very similar to aramid but with much better axial compression fatigue and creep performance 
[Flory, 1992; Del Vecchio, 2011]. The rope stiffness and submerged weight per unit length is similar to the ropes made from 
aramids. Currently capacity is limited and costs are similar to HMPE but there is a potential for this fiber to be mass 
produced at a lower cost if the market demands it. 

 
Case Study: Permanent Mooring Performance as a function of Water Depth and Synthetic Rope Stiffness  
In order to evaluate the application of high modulus synthetic material in frontier deepwater mooring systems a comparative 
study has been performed. For the purpose of this study, an internal turret mooring system with 9 taut legs arranged in 3 
groups of 3 legs is evaluated. Table 1 presents the vessel properties used here and represent a typical converted VLCC. The 
mooring legs comprise three main sections of top chain, synthetic rope, and bottom chain. The study is performed for three 
water depths (WD) of 1,500, 3,000, and 4,500 meters covering the range of current design practice to frontier deepwater 
areas. For each water depth, three synthetic rope configurations are considered: a) all polyester (100% Poly), b) a blended 
configuration with equal lengths of polyester and high modulus rope (50% Poly & 50% HM), c) all high modulus (100% 
HM). It is known that use of high modulus synthetic ropes is not common for water depths for the shallower water depths but 
was included for completeness of this study. For simplicity, a linearized estimate of axial stiffness of 18.5 times MBL is 
considered for polyester rope, and a value of 55 times MBL for the high modulus synthetic rope. These assumed stiffnesses 
are considered to be representative of the overall dynamic stiffness of the two ropes under quasi-static and dynamic loading 
and are thus higher than the quasi-static stiffness values, while lower than the peak dynamic stiffness values. These stiffness 
values tend to be conservative for calculation of extreme offset and fatigue damage while underestimating the extreme 
dynamic loads. It should be noted that the main purpose of this comparative study is to evaluate the trends and absolute 
values are not that important as the mooring systems studied are not optimized for the conditions considered here. 

 
Table 1. Properties of the FPSO 

 
 
Table 2 presents the component lengths and general characteristics of studied mooring systems. To limit the number of 

contributing variables, the top chain and bottom chain segments are kept the same in all cases studied. Following the same 
idea, at each water depth, the top tension and mooring horizontal radius are kept constant for different synthetic rope 
configurations, i.e. only synthetic rope length, mass, and stiffness are varying. As can be seen in Table 2, the pretension has 
increased from 180 MT for the 1,500 meter water depth to 200 MT and 225 MT respectively for 3,000 meters and 4,500 
meters water depths. The increase in the pre-tension as a function of water depth is considered for more consistency in the 
mooring system stiffness and is considered reasonable for a mooring system with components of approximately the size 
assumed. For out-of-plane bending fatigue of top chain, it is recommended to keep the pre-tension to less than 15% of MBL 
which is maintained in this study. 

 
Table 2.  Mooring System Components and Properties 

 
 

Length 320 m

Breadth 56 m

Draught 15.5 m

Displacement 230188 mT

Top Side Weight 20000 mT

Daily production 100000 bbl/day

100% 
POLY

50% POLY  
- 50% HM

100% 
HM

100% 
POLY

50% POLY  
- 50% HM

100% 
HM

100% 
POLY

50% POLY  
- 50% HM

100% 
HM

Top Chain 
Studless Grade R4 - 
130mm Dia.

150 150 150 150 150 150 150 150 150

Polyester 2100 1052 - 4000 2003 - 6300 3158 -

High Modulus - 1052 2107 - 2003 4014 - 3158 6334

Bottom Chain
Studless Grade R4 - 
130mm Dia.

225 225 225 225 225 225 225 225 225

Horizontal Radius [m]

Top Tention [mton]

Section Description

1500m WD 3000m WD 4500m WD

Segment Length [m]

175 200 270

Synthetic Rope

Mooring Leg Properties

1982 3215 5005
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type, stationkeeping design philosophy, riser system, mooring system components, installation considerations, and regulatory 
environment.  

The paper also discusses the use of high modulus synthetic fiber ropes as a component for the anchor leg systems. These 
high modulus ropes have a stiffness 3 to 4 times that of polyester rope and are shown to reduce the vessel offsets. A brief 
description of the most common high modulus fiber ropes with some relevant references has been provided. Though there are 
differences in the performance of the fibers for the purpose of this paper they are considered to be equivalent as the stiffness 
and weight of the various ropes are similar. It has also been identified that these ropes are currently 2 to 4 times the cost of an 
equivalent polyester rope and this is another parameter that would need to be considered as part of the design phase.    
Using a case study, it is demonstrated that the use of higher modulus ropes results in higher dynamic extreme loads and 
higher fatigue damage than a mooring system with larger offsets made of polyester. This implies that the selection of the 
axial stiffness of the synthetic section of the anchor leg is important and that an optimum stiffness could be selected by using 
a combination of segments of polyester rope and high modulus synthetic rope, analogous to combining springs in series. It is 
expected that the use of these hybrid designs would be the most cost effective approach to optimizing the vessel offsets. 
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