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ABSTRACT 

The use of multi-parameter distribution functions that incorporate empirically derived 

parameters to more accurately capture the nature of data being studied is investigated.  

Improving the accuracy of these models is especially important for predicting the 

extreme values of the non-linear random variables.  This study was motivated by 

problems commonly encountered in the design of offshore systems where the accurate 

modeling of the distribution tail is of significant importance.   A four-parameter Weibull 

probability distribution model whose structural form is developed using a quadratic 

transformation of linear random variables is presented.  The parameters of the 

distribution model are derived using the method of linear moments.   For comparison, 

the model parameters are also derived using the more conventional method of moments.   

To illustrate the behavior of these models, laboratory data measuring the timeseries of 

wave run-up on a vertical column of a TLP structure and wave crests interacting in close 

proximity with an offshore platform are utilized.  Comparisons of the extremal 

predictions using the four-parameter Weibull model and the three-parameter Rayleigh 

model verify the ability of the new formulation to better capture the tail of the sample 

distributions.  

 

Keywords: Four-parameter Weibull distribution, three-parameter Rayleigh distribution, 
method of linear moments, method of moments, extreme value analysis, 
wave-structure interaction, wave crest, wave run-up. 
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1. Introduction 

The development of probability distribution models that incorporate empirical-

based coefficients to better capture the nature of the laboratory and field data is of 

interest to a wide range of scientific and engineering studies that typically involve non-

linear behavior.  In order to predict the extreme behavior of the process, probabilistic 

distribution models must accurately capture the tail of the distribution.  In this research 

study, a four-parameter probability distribution model is derived and used to investigate 

the probability distribution of non-linear random variables commonly observed in 

offshore engineering applications. 

The distribution model derived is based upon the quadratic transformation of 

linear random variables first applied by Tayfun [1] to study the behavior of wave crests 

and introduced the Rayleigh-Stokes probability distribution model [2, 3].  The naming 

reflected the use of an ocean wave series expansion model attributed to Stokes, with the 

most common being linear and second-order models (see e.g. [4]).  Tyfun’s model 

assumed the physical process to be weakly non-linear, narrow-banded, and that the first-

order and second-order terms of the Stokes ocean wave model are phase-locked.  Thus, 

the distribution model could be characterized using a single distribution parameter 

estimated using a theoretical expression relating the significant wave height and mean 

period.  Tayfun’s model was subsequently refined by other researchers [5-10].  A two-

parameter Rayleigh-Stokes model developed by Kriebel [11] incorporated an 

amplification factor obtained from linear diffraction theory to study the probability 

distribution of wave run-up over large bottom-mounted vertical columns.  This was an 
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important development in that physical reasoning about the phenomena based upon 

appropriate theoretical models began to appear.  Izadparast and Niedzwecki [12-14] 

developed a three-parameter Rayleigh distribution model that combined the theoretical 

information, quadratic transformation of the linear random variable, and empirical 

parameter estimates that were obtained using the method of linear moments. Their 

research study showed that utilizing linear moments to estimate the model parameters 

was fairly robust.  However, it was noted that additional model flexibility might improve 

the accuracy in modeling the tail of some sample probability distributions. 

In this study, a four-parameter Weibull probability distribution model that 

incorporates the method of linear moments is derived and presented. Similar to the three-

parameter Rayleigh model, the structural form of the four-parameter Weibull is derived 

from quadratic transformation of the linear random variable. To better assess this 

modeling approach and its ability to accurately reproduce the tail of the distribution, the 

unknown distribution parameters were estimated using both the conventional method of 

moments and the method of linear moments [15].  In particular, the relationship between 

the first four distribution moments and the model parameters are derived and 

subsequently used to obtain the empirical estimates of the model parameters.  This 

Weibull distribution model is applied in conjunction with the theory of ordered statistics 

to obtain the probability distribution of maxima in N observations.  The asymptotic 

form of the extreme distribution for large number of waves is derived and the extreme 

parameters are related to the four parameters of the Weibull model. The designation of 



 

 

4

the distribution model was shortened, as it is not limited to offshore applications 

provided that the assumptions are addressed or modified appropriately. 

To illustrate the behavior and accuracy of the four-parameter Weibull 

distribution model, experimental data for a TLP model tested in random seas [16, 17] is 

analyzed and presented.  The comparative behavior of the three-parameter Rayleigh and 

the four-parameter Weibull distribution models are investigated.  In particular, the 

models are applied to estimate the probability distribution of wave crests interacting with 

the TLP and the probability distribution of wave run-up on a vertical structural column.  

Distribution estimates are obtained using both moment-based methods and their 

performance in capturing the probability distribution of extreme observations is 

evaluated utilizing bootstrap analysis.  

 

2. Four-parameter Weibull model development 

Assuming the probability density function (PDF) of the linear process f  is known, 

one can obtain the PDF of the non-linear process from random variables transformation 

rule as (see e.g. [18])  

       , ,
n n n n n

n

f x f G x G x      



   


 (1) 

where, the transformation function  nG   in this study is based upon second-order 

Stokes wave theory in which the crests and troughs n  of weakly non-linear and narrow 
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banded process can be approximated from its quadratic relation with the linear random 

variable  , specifically [14]  

2
n          (2) 

where,  indicates the constant linear shift between the linear and non-linear process, i.e. 

zeroth-order term,  and   specify the amplification of the first- and second-order terms, 

respectively.  In this transformation,  ,   and  are real numbers, 0  , and   .  

This leads to the expression 

 
2nG
 


 
   (3) 

and, 

  1 22 4 n         (4) 

In the four-parameter Weibull model, it is assumed that the linear term follows a 

2-parameter Weibull distribution, specifically  

 
1

exp 0
x x

f x x
 



  

                
 (5) 

where,   and   are the shape and scale parameters, respectively.  Substituting Eq. (5) 

into Eq. (1), it can be shown that the distributions of four-parameter Weibull model for  

0    are of the form 
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 

 

       

1

1

2 12

exp ,
2 2

1 exp ,
2

ln 1 ln 1 .

n

n

n

f x x

F x

x u u u

 







 


     
  

 


   




     
           

  
       

      

 (6) 

where 
n

F and 
n

x are the cumulative distribution function (CDF) and quantile function 

of the non-linear random variable n , respectively, and 0 1u   is the probability of 

nn x  .  For the case where 0  the distributions can be expressed as 

   

   

1

1 2

exp
2 2

exp ,
2 2 4

1 exp exp ,
2 2

n

n

f x H x

x

F x H x

 

 

 

 

 

    
  

    
  

   
 





                 
                   

                              

 (7) 

where, 

 
1

0

x
H x

x





  

  (8) 

Note that the exact analytical form of the quantile function is not available for this case. 

Assuming that   , it can be shown that for the valid range of x the contribution of 

the second exponential term to  
n

F x  is negligible in respect to the contribution of the 

first exponential term and an approximate solution for the quantile function can be 

obtained from   
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       2 12 ln 1 ln 1
n

x u u u
 

           (9) 

where the distribution is defined for, 

 0 1 exp
2

u





  
        

  (10) 

It should be mentioned that the four-parameter Weibull probability distribution 

simplifies to a three-parameter Rayleigh distribution [12-14] with an appropriate 

parameter substitution 2   and 2  .  

The three parameters  ,  , and   do not have independent effects on the 

quantile distribution, Eq. (6), and their contributions can be modeled with two of the 

parameters. Here, without loss of generality, it is assumed that   is a known constant, 

e.g. 2  , and the other two parameters   and   are assumed to be unknown 

variables. The effect of parameters  ,  , and   on the quantile distribution of the four-

parameter Weibull model is studied in Fig. 1. As shown in Fig. 1 (a), the increase in the 

parameter  elevates the quantile value of the same probability and causes a longer 

distribution tail.  The effect of   is similar throughout the quantile distribution as it 

amplifies the linear term.  Parameter   indicates the amplification of the quadratic term 

and has a sensible effect on the tail distribution while its contribution to the distribution 

of 1.0
n

x 
 
is limited. The shape parameter   affects both linear and non-linear terms 

and essentially defines the distribution curvature. Regarding the distributions shown in 

Fig. 1 (b), 2.0   causes a longer distribution tail than that of the three-parameter 

Rayleigh distribution with 2.0  , while 2.0   has the opposite effect.  As shown in 
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this figure, the distribution tail is highly sensitive to the value of the parameter   while 

the distribution of normal events, i.e. 2.0
n

x  , is not significantly affected by value of 

 . It should be noted that   has a constant effect on the entire quantile distribution 

where positive and negative   shift the distribution up and down, respectively.  
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(a) 

 
(b) 

 
(c) 

Fig. 1. Effect of parameter values on the quantile distribution of four-parameter 
Weibull model: (a) 2.0   and (b) 1.0  , (c) 0.05  . 
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3. Model statistics and empirical parameter estimation 

The conventional method of moments (MoM) and the more recently developed 

method of L-moments (MoLM) are used to estimate the unknown parameters of the 

four-parameter Weibull distribution model, i.e.  ,  ,  , and  . In the following 

sections, the general characteristics of these two moment-based parameter estimation 

methods are briefly overviewed and their specific application to the four-parameter 

Weibull distribution model is discussed. 

3.1. Method of Moments 

Ordinary moments are basic statistics commonly used to characterize random 

variables and also applied for empirical parameter estimation purposes.  By definition, 

the central moments of a random variable X  with quantile function of  x u  are 

obtained from  

   

      

1

1 0

1

10

1

1
n

n

X x u du n

X x u X du n



 

 

  




 (11) 

The mean  1 X represents the centroid of the distribution and the variance 

 2
2X X   is a measure of the distribution dispersion around its center.  Other useful 

statistics are the dimensionless third and fourth moments respectively called skewness 

  3
3X Xs X   and coefficient of excess kurtosis   4

4 3X XK X   .  

Substituting the quantile function of four-parameter Weibull model, Eq. (6), in Eq. (11), 

the relation for the first four moments of the four-parameter Weibull distribution are 
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derived and presented in Eq. (12).  In this equation   1

0

t zz e t dt
      indicates the 

well-known gamma function. In the MoM, the estimates of the unknown model 

parameters are obtained by equating the distribution moments, Eq. (12), with their 

corresponding sample moments and solving the system of equations numerically. The 

unbiased estimates of the first four sample moments can be obtained from a sample data  

(see e.g. [19]).  

  



 

 

12

     
2

1

2
2 1 ,n

     
 

      (12) 

           

   

2 4 3

2

2 2
2

4 1 2 2
4 2 3 3 2 1

1
2 2 1 ,

n k

k

       
   

  
 

               
   

    
 

 

         

             

           

       

3 6
3

3 2

2 5
2

2

2 4
2 2

2

3 3
3

2

4 24 16
6 6 4 2 2

3 12 8 4
5 5 3 2 1 2 4 1

3 6 4 4
4 4 3 1 2 1 2

6 2
3 3 2 1 1 ,

n

      
  

         
   

       
   

     
  

         
 

            
 

           
 

       
 

 

             

             

         

             

       

4 8
2 4

4 2 3

3 7
2

2

2 3

2 2 6
2 2

3

3 2
2 2 2

8 12 6 6
8 4 2 6 2 2

4 36 30 6
7 8 3 2 5 2 6 1

24 24
4 2 1 2 1

6 16 10 12
6 6 4 2 5 1 2 1

8 4 24
2 4 1 3

n

        
   

         
   

    
 

         
   

   
  

            
 

           


      


           


         

             

       

           

3 5
2

2

2 3
2 3

4 4
2 4

2 3

2 1

4 9 6 12
5 5 3 1 3 2 4 1

6 6
1 2 2 1

12 12 3
4 4 3 1 2 1 2 .

 

        
   

   
 

       
   

 


           


     


          
 
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3.2. Method of Linear Moments 

Hosking [15] introduced the L-moments as a linear function of the random 

variable quantile function multiplied by an orthogonal polynomial, specifically, 

     
1 *

10n nX x u P u du     (13) 

where the shifted Legendre polynomial of degree n ,  *
nP u , is defined as  

 * *
,

0

r
k

n n k
k

P u p u



 

 (14) 

and  

   
   

*
, 2

1 !

! !

n k

n k

n k
p

k n k

 



  (15) 

By definition, 1  is the L-location or mean of the distribution, 2  is the L-scale, 

and 2 1   , 3 3 2   , and 4 4 2    are  L-Coefficient of variation, L-skewness, 

and L-kurtosis, respectively. The main difference between ordinary moments and L-

moments is that moments give greater weight to the extreme tails of the distribution. The 

weight given to the extreme tail, i.e. 1u  , increases by   n
x u  and by nu  

respectively for ordinary moments, and L-moments. For most probability distributions 

 x u  grows much faster than u  as 1u  ; especially in the case of four-parameter 

Weibull model with 0   the distribution has no upper bound and therefore  x u   

as 1u  .  
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The first four L-moments of the non-linear variable n  are derived by applying 

the quantile function of four-parameter Weibull model Eq. (6) in Eq. (13) , specifically 

     
2

1

2
2 1 ,n

     
 

      (16) 

           
2

2 1

2

2
1 1 2 2 1 1 2 1 ,n

     
 

     

 

        
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As shown in Eq.s (12) and (16), the nth  distribution moment is a polynomial of degree 

n of the parameters   and   while L-moments are linear functions of these parameters. 

Both moments and L-moments are non-linear functions of the Weibull parameters   

and  . 

 

For an ordered sample 1: 2: :      
s s s sN N N Nx x x    , the unbiased sample 

estimates of the L-moments can be estimated from [19] 

 1 ,
0

0,1,..., 1
n

n n k n s
k

l X p n N




    (17) 

where the coefficients ,n kp  are introduced in Eq. (15), and n  is defined as 

1

1
:

1

1 1s

s

N
s

n s j N
j n

N j
N x

n n






 

    
    

   
  (18) 
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where the brackets denotes the binomial coefficients. It was shown in studies by 

Hosking [15, 19] that high order sample L-moments are considerably less biased than 

the corresponding sample moments especially for samples with limited number of 

observations.  

Similar to MoM, the parameter estimation with MoLM starts with defining the 

system of equations by equating the distribution L-moments, Eq. (16), with their 

corresponding sample estimators, Eq. (17). Next, the system of equations is solved 

numerically for the unknown model parameters.  

  
4. Evaluation of Extreme Statistics 

Assuming that n  are independent identically distributed (i.i.d) random variables 

the PDF 
max

f and CDF 
max

F of the maxima max in N  observations can be obtained from 

the ordered statistics theory [20], specifically as 

     

   
max

max

1

n n

n

N

N

f x N f x F x

F x F x

  

 


   

     

 (19) 

where  
n

f x  and  
n

F x  are the PDF and CDF of non-linear random variable defined 

in Eq.s (6) and (7) respectively for the cases with 0   and 0  . This approach has 

been used to estimate the statistics of wave crest maxima utilizing the theoretical 

Rayleigh-Stokes crest distribution [21-24].  The assumption that consecutive wave crests 

are independent may not be theoretically well justified and the common positive 

correlation of successive wave crests may lead to conservative estimates of the crest 
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maxima from Eq. (19).  However, the results of previous studies [23, 24] indicate that 

this approximation is reasonably accurate for number of waves 100N  .   

It can be shown that for large number of waves, the asymptotic form of the 

maxima distribution of the four-parameter Weibull model belongs to the Gumbel domain 

of attraction with CDF of  

 
max

exp exp N

N

x a
F x x

b

  
           

 (20) 

where Na  and Nb  are the extreme parameters and their relations with the model 

parameters and the number of waves N are  

 
     

           

2 12

2 2 1 12

ln ln

ln 1 ln ln 1 ln

N

N

a N N

b N N N N

 

   

  

 

  

           

 (21) 

From this, the first three moments of are obtained as 

 

 

   

1 max

2
2

2 max

3
3 max

,

,
6

2 3 .

N N EM

N

R N

a b

b

b

  

 

  

 




 

 (22) 

where 0.5772EM   is the Euler-Mascheroni constant and  R z  is the Riemann zeta 

function which at 3z  has a value of approximately  3 1.2021R  . Similarly, the first 

three L-moments of max are derived as 

 
   
      

1 max

2 max

3 max

,

ln 2 ,

2 ln 3 3ln 2 .

N N EM

N

N

a b

b

b

  

 

 

 



 
 

 (23) 

max
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 For illustrative purposes, the effect of four-parameter Weibull model parameters 

 ,  , and   on the quantile distribution of maxima  
max

x P  is presented in Fig. 2. 

Note that the Weibull model distribution with 0   has an upper bound, which is 

considered in the estimation of probability distributions in Fig. 2.  
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(a) 

 
(b) 

 
(c) 

Fig. 2. Effect of parameter values on the quantile distribution of maxima: (a) 
2.0   and (b) 1.0  , (c) 0.05  .  

10
-410

-310
-210

-110
0

-0.1
-0.05

0
0.05

0.1
0

5

10

15

20

 

  / 
P = ( 1 - u )

 

x 
 m

ax
 (

 P
 )

 =1.0

 =1.2

 =1.4

 =1.6

10
-410

-310
-210

-110
0

-0.1
-0.05

0
0.05

0.1
0

5

10

15

20

 


P = ( 1 - u )

 

x 
 m

ax
 (

 P
 )

 = 1.50

 = 1.75

 = 2.00

 = 2.25

 = 2.50

10
-410

-310
-210

-110
0

1
1.2

1.4
1.6

0

5

10

15

20

 


P = ( 1 - u )

 

x 
 m

ax
 (

 P
 )

 = 1.50

 = 1.75

 = 2.00

 = 2.25

 = 2.50



 

 

19

5. Model application and evaluation 

5.1. Model test data 

The data sets to be analyzed in this study were obtained in a model test 

investigating the response behavior of a 1:40 scale model of a deepwater unmanned 

mini-TLP platform subject to random seas.  Selected particulars of the mini-TLP model 

are presented in Table 1 and additional model test details can be found in the open 

literature [16, 17].  Each individual recorded time series represented a 3-hr design sea at 

prototype scale.  The design seas were modeled using a JONSWAP wave spectrum with 

a significant wave height of 13.1m ,  a peak period of 14.0s , and a spectral peakedness 

factor of 2.2 . This design sea represented a 100-year Gulf of Mexico storm condition. 

The experimental study was conducted for both compliant and fixed hull configurations, 

but only the measurements obtained for the fixed hull quartering sea configuration are 

used in this study.  This hull orientation along with the location of the air-gap probe A3 

and wave run-up probes R1 and R2  is shown in Fig. 3 

Table 1 Main particulars of the prototype mini-TLP. 

Draft 28.50 m 

Column Diameter 8.75 m 

Column Spacing 28.50 m 

Pontoon Height 6.25 m 

Pontoon Width 6.25 m 

Water Depth 668 m 
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Fig. 3.  Plan view of the mini-TLP model test and the wave probe locations. 

 

5.2. Estimating Model Bias, Variance and Error 

The models performance is evaluated utilizing the semi-parametric bootstrap 

simulation. Bootstrap analysis is typically used to determine the bias, variance, and root-

mean-squared error (RMSE) associated with a sample estimate ̂  of a parameter of 

interest   [25, 26], specifically 

 *
ˆ

1

1
ˆ

M

i
iM  


     (24) 

 22 * *
ˆ

1

1

1

M

i
iM  


 
    (25) 

  2 2
ˆ ˆˆRMSE        (26) 
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where *
i  is the estimate of   from ith  bootstrap sample, M  is the number of bootstrap 

samples, and ̂  and 2
̂  are the bootstrap estimates of the true bias and true variance. In 

the semi-parametric bootstrap method, the independent samples of equal size to the 

original sample are generated with replacement from a smoothed empirical distribution 

with a parametric tail distribution. For this purpose, Kernel density estimation [27] is 

utilized to estimate the major part of the probability distribution and the distribution tail 

is modified with Generalized-Pareto distribution. The semi-parametric bootstrap is more 

suited for extreme analysis as compared to the conventional bootstrap analysis. 

Additional details about the semi-parametric bootstrap analysis can be found in [28]. 

In Table 2, the estimates of the model parameters of four-parameter Weibull (4-

Par. Weibull) three-parameter Rayleigh (3-Par. Rayleigh) models calculated for the three 

samples measured at R1, R2, and A3 are compared (see Fig. 3 for the probes location). 

For a more complete comparison, the estimates of both MoLM and MoM are presented 

in this table. Note that the parameters here are estimated from one 3-hr realization with 

approximately 1,000sN   observations. The samples are normalized with respect to the 

first-order standard deviation of the incident wave surface elevation   
estimated from 

its relation with significant wave height 4 3.28sH m   . As shown in Table 2, the 

parameter estimates of MoLM and MoM of the same model are reasonably close. The 

estimates of linear contribution  of four-parameter Weibull and three-parameter 

Rayleigh models are in an acceptable agreement and the values are significantly larger 

than 1.0. The largest value of parameter   is estimated for wave run-up at R2 that is an 
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indication of the relatively large contribution of diffracted waves at this location. The 

four-parameter Weibull model consistently has estimated a larger absolute  . As shown 

in Fig 1. (b), the negative   balances the large first-order contribution on the tail 

distribution. More interestingly, the four-parameter Weibull shape parameter   has a 

value smaller than that of the three-parameter Rayleigh model with 2.0  . This, as 

indicated in Fig 1. (c), decreases the distribution curvature of the four-parameter Weibull 

as compared to that of the three-parameter Rayleigh distribution. The shifting parameter 

  is consistently negative in the studied cases which shifts the model distributions 

downward and causes non-zero probability for 0
n

x  . Since negative wave crests and 

run-ups are not physically meaningful, the distributions are only defined for 0
n

x 
 
and 

it is assumed that    Prob 0 = Prob 0
n

x x  . 
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Table 2. Parameter estimates of four-parameter Weibull and three-parameter 
Rayleigh distribution models 

Parameter Model 
Parameter
Estimation

Crests 
@ A3 

Run-up  
@ R1 

Run-up  
@ R2 

̂  

3-Par. Rayleigh MoLM 1.747 1.907 1.598 

3-Par. Rayleigh MoM 1.759 2.169 1.632 
4-Par. Weibull MoLM 1.728 1.915 1.627 

4-Par. Weibull MoM 1.723 1.919 1.616 

̂  

3-Par. Rayleigh MoLM -0.093 0.046 -0.006 

3-Par. Rayleigh MoM -0.100 -0.055 -0.020 
4-Par. Weibull MoLM -0.136 -0.161 -0.108 

4-Par. Weibull MoM -0.127 -0.163 -0.091 

̂  

3-Par. Rayleigh MoLM 2.000 2.000 2.000 

3-Par. Rayleigh MoM 2.000 2.000 2.000 
4-Par. Weibull MoLM 1.735 1.469 1.612 

4-Par. Weibull MoM 1.772 1.446 1.673 

̂  

3-Par. Rayleigh MoLM -0.399 -0.504 -0.429 
3-Par. Rayleigh MoM -0.402 -0.631 -0.443 
4-Par. Weibull MoLM -0.248 -0.105 -0.234 
4-Par. Weibull MoM -0.280 -0.090 -0.280 

 

In Fig.s 4, 5, and 6, the quantile distributions and the quantile RMSE 

distributions of the wave samples measured at R1, R2, and A3 are shown, respectively. 

The sample distributions in these figures are obtained from the semi-parametric 

approach and also applied in the bootstrap analysis. The 95% confidence intervals (CI), 

as well as the RMSE distributions are obtained from utilization of 20,000 bootstrap 

samples. As shown in Fig. 4 (a), the sample distribution at R1 starts with an extremely 

steep slope which follows with a relatively mild slope for 4.8
n

x  . The slope change in 

the tail part of the distribution is common in wave measurements of extreme 
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environments and is mainly caused by an energy loss mechanism, e.g. wave breaking. It 

is observed that the three-parameter Rayleigh model is mostly affected by the initial 

steep slope and successfully captures the distribution of 4.8
n

x  , while overestimates 

the larger wave run-ups. The four-parameter Weibull model is successful in capturing 

the sample tail distribution while slightly deviates from the sample distribution in the 

range of 3.5 4.9
n

x  . Regarding the RMSE distributions in Fig. 4 (b), the four-

parameter Weibull and three-parameter Rayleigh models perform similarly for 3
n

x  . 

The three-parameter Rayleigh model found to be more accurate for 3.0 4.8
n

x  , 

while four-parameter Weibull model performs better in capturing the probability 

distribution of 4.8
n

x  . The local peak in the RMSE distributions around 0.1P   is 

due to the slope change in the sample tail distribution.   

Wave run-up measurements at R2 are less energetic and less non-linear than 

those at R1 resulting in a probability distribution with a milder initial slope and less 

significant slope change of the tail distribution. As shown in Fig. 5 (a), the distribution 

estimates of MoM and MoLM converge reasonably well and both three-parameter 

Rayleigh and four-parameter Weibull models are successful in capturing the probability 

distribution of data. It is also observed that three-parameter Rayleigh model slightly 

overestimates the extreme wave run-ups of 4.2
n

x  , while four-parameter Weibull 

model, especially the distribution estimated by MoM, accurately represents the sample 

tail distribution.  The error distributions in Fig. 5 (b) clearly indicate an agreement 

between the model estimates as well as an acceptable accuracy of four-parameter 
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Weibull and three-parameter Rayleigh models in capturing the sample distribution. 

Regarding the results shown in Fig. 6, both four-parameter Weibull and three-parameter 

Rayleigh model are considerably successful in capturing the sample probability 

distribution of wave crests at A3 as the sample distribution does not show any 

irregularity.  

Table 3 shows the estimates of expected maximum elevation  1 max̂   in 

1000N   waves obtained from application of the estimated model parameters, given in 

Table 2, into Eq.s (21) and (22). Additionally, the estimates of  1 max̂ 
 
obtained from 

the sample distribution and empirical Rayleigh and empirical Weibull distributions are 

provided in this table. Note that the values in this table are normalized with respect to the 

incident wave standard deviation 3.28m  .  As expected, the wave run-up sample at 

R1 has the highest  1 max̂  and the next largest  1 max̂  is predicted for wave run-up 

sample at R2. For the studied examples, the estimates of MoLM and MoM of the same 

model are reasonably close. The results shown in Table 3 clearly indicate that the 

empirical Weibull distribution significantly overestimates the extreme values. The 

empirical Rayleigh distribution estimated more representative extreme values than the 

empirical Weibull distribution, even though the total sample distribution is more 

accurately captured by Weibull distribution. In the studied examples, the three-parameter 

Rayleigh model consistently predicts larger expected maximum than both the four-

parameter Weibull model and the sample distribution. The issue is more sensible in the 

case of wave run-ups at R1 for which the three-parameter Rayleigh model has predicted 
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an unrealistically large expected maxima of about 7.50 (equivalent to 24.6m). The 

overestimation is mainly due to inability of three-parameter Rayleigh model in capturing 

the negative slope change in the tail distribution. This shortage is improved in the four-

parameter Weibull model with utilization of the fourth moment and as shown in Table 3, 

the estimates of four-parameter Weibull model follows the sample estimates reasonably 

well.    
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(a) 

 
 

(b) 

Fig. 4. Wave run-up at R1: (a) quantile distributions, (b) RMSE distributions. 
 
 

10
-4

10
-3

10
-2

10
-1

10
0

0

1

2

3

4

5

6

7

8

P = ( 1 - u )

x 
 n ( 

P
 )

 

 

Sample-Dist .

3-Par Rayleigh, MoLM

3-Par Rayleigh, MoM

4-Par Weibull, MoLM

4-Par Weibull, MoM

95% CI

10
-4

10
-3

10
-2

10
-1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 

P = ( 1 - u )

R
M

SE
 ( 

x 
 n ( 

P
 ) 

)

3-Par Rayleigh, MoLM

3-Par Rayleigh, MoM

4-Par Weibull, MoLM

4-Par Weibull, MoM



 

 

28

 
(a) 

 
(b) 

Fig. 5. Wave run-up at R2: (a) quantile distributions, (b) RMSE distributions. 
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(a) 

 
(b) 

Fig. 6. Wave crests at A3: (a) quantile distributions, (b) RMSE distributions. 
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Table 3. Estimates of expected maximum elevation in 1000 waves. 

Model 
Crests 
at A3 

Run-ups 
at R1 

Run-up 
at R2 

Sample Distribution 4.82 5.64 5.39 
Empirical Rayleigh 5.10 6.48 5.10 
Empirical Weibull 6.38 8.94 7.17 
3-Par. Rayleigh-MoLM 4.96 7.56 5.66 
3-Par. Rayleigh -MoM 4.91 6.93 5.57 
4-Par. Weibull -MoLM 4.77 5.56 5.16 
4-Par. Weibull -MoM 4.83 5.54 5.31 

 
6. Conclusions 

The four-parameter Weibull probability distribution was introduced as an 

improvement to the three-parameter Rayleigh distribution of weakly non-linear 

variables. The four-parameter Weibull probability distribution was introduced as an 

improvement to the three-parameter Rayleigh distribution of weakly non-linear 

variables. In development of both models, the theoretical information of the variable was 

based to derive the mode structure using the quadratic transformation of the linear 

random variable. The empirical estimates of the model parameters were obtained from 

method of linear moments, which improved the flexibility of the models in capturing the 

probability distribution of sample data. These empirical probability distribution models 

can be used for probability distribution estimation of a wide range of non-linear random 

variables in different fields of engineering. 

The four-parameter Weibull formulation takes advantage of an unknown shape 

parameter that was assumed to be a fixed constant in the three-parameter Rayleigh 

distribution. The additional parameter improves the flexibility of the four-parameter 
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Weibull probability distribution in estimating the sample tail distribution. The four-

parameter Weibull model was utilized to evaluate the extreme statistics and deriving the 

asymptotic probability distribution of maxima in large number of observations. The 

estimates of four-parameter Weibull model parameters were obtained from application 

of conventional method of moments and the method of linear moments. For this purpose, 

the first four distribution moments were derived in terms of the model parameters and 

consequently the relations were used to evaluate the parameters.  

For illustrative purposes, the four-parameter Weibull probability distribution was 

applied to estimate the probability distribution of wave run-up measurements over a 

vertical column of a TLP model test and the probability distribution of wave crests 

measured at the center of the platform inside the moon-pool area. The root-mean-

squared error of the quantile distributions estimated from application of the bootstrap 

analysis was utilized as the measure to evaluate the models performance. In the cases 

studied, the model parameters estimated by conventional method of moments and 

method of L-moments are in a reasonable agreement. The three-parameter Rayleigh and 

the four-parameter Weibull models perform similarly for the major part of the 

distribution while the difference between the model estimates is more sensible on the 

distribution tail. It was verified that four-parameter Weibull model is more flexible than 

three-parameter Rayleigh model in estimating the sample tail distribution. The studied 

wave run-up samples indicated a sudden negative slope change in the distribution tail 

which was not completely captured by three-parameter Rayleigh model. This caused an 

overestimation in the extremal predictions of the three-parameter Rayleigh model. The 
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four-parameter Weibull found to be more robust in capturing the slope change of the tail 

distribution and the model predicted more reliable extreme statistics.  
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