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ABSTRACT 
Ocean engineers are routinely faced with design problems 

for coastal and deepwater structures that must survive a wide 
range of environmental conditions. One of the most 
challenging problems in the field of ocean engineering is the 
accurate characterization and modeling of the interaction of 
ocean waves with these offshore structures.  The random 
characteristic of ocean environment requires engineers to 
consider the effects of random variability of the pertinent 
variables in their predictive models and design processes. Thus, 
for ocean engineering purposes, one needs to have accurate 
estimates of the probability distribution of the key random 
variables that will be used in sensitivity studies, reliability 
analysis, and risk assessment in the design process.  

In this study, a family of semi-empirical probability 
distribution is developed based on the quadratic transformation 
of linear random variable assuming that the linear random 
variable follows a Rayleigh distribution law. The estimates of 
model parameters are obtained from two moment based 
parameter estimation methods, i.e. method of moments and 
method of linear moments. The studied semi-empirical 
distribution can be applied to estimate the probability 
distribution of a wide range of non-linear random variables in 
the fields of ocean wave mechanics and wave-structure 
interaction. As examples, the application of the semi-empirical 
model in estimation of probability distribution of: a) ocean 
wave power, b) ocean wave crests interacting with an offshore 
structure is illustrated. For this purpose, numerically generated 
timeseries and experimentally measured data sets are utilized.  

INTRODUCTION 
The wave-structure interaction problem is a major design 

challenge for ocean engineers in both benign and extreme 
environmental conditions. The interaction between highly 
energetic waves and the structure may result in unanticipated 
behavior including large structural motions, wave impact 
loading, and deck inundation.  At some offshore sites, mildly 
energetic ocean waves may be converted to usable energy, 
utilizing Wave Energy Convertor (WEC) devices that capture 
the kinematic energy of the wave motions. Due to the random 
characteristic of ocean environment, ocean engineers are 
required to consider the effects of random variability of the 
pertinent variables in their predictive models and design 
processes. For the thorough study of wave-structure interaction 
phenomena, one requires robust methods to estimate the 
probability distribution of complex non-linear random 
variables. 

In the theory of statistics, parametric distribution models 
are considered as a major family of probability distributions in 
which a distribution function consists of an underlying 
structural form that is dependent upon finite number of 
parameters. Two main approaches are commonly utilized in 
different engineering fields to specify the structural form and 
estimate the parameters of a parametric model, i.e. theoretical 
approach and empirical approach. In the theoretical approach, 
the structural form and the model parameters are derived based 
on a mathematical model that approximates the physics 
governing the process. For example, Tayfun [1-3] utilized a 
special form of second-order Stokes’ wave theory to derive the 
probability distribution of weakly non-linear ocean wave crests. 
In the empirical approach, it is assumed that the random 
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variable follows a standard probability distribution e.g. 
Gaussian, Weibull, Rayleigh, etc. and the unknown parameters 
are estimated empirically using sample data.  For example, 
Forristall [4, 5] utilized numerically generated and measured 
wave data to show that the probability distribution of second-
order ocean wave crests can be reasonably presented by 
Weibull distribution. Stansell [6, 7] showed that the extreme 
wave crests measured in the North Sea follow the generalized-
Pareto distribution. The main advantages of the theoretical 
approach are: (a) the probability distribution and the model 
parameters reflect some physical insight, and (b) the parameter 
estimation requires limited information about the process. 
However, the theoretical models lack flexibility and their 
efficiency decreases when the assumptions are not fully met. 
The empirical models have found to be more flexible in 
capturing the probability distribution of data and have a wider 
range of applicability. However, the empirical model and the 
parameters do not have clear connection to the physics of the 
process. The application of empirical models has become an 
important option with availability of high quality data sets from 
full-scale measurements, experimental model tests, and 
calibrated numerical models. 

In recent studies, significant attention is given to the semi-
empirical probability distribution functions that incorporate 
empirically derived parameters to theoretically derived 
distribution forms [8, 9].    What separates the semi-empirical 
models from routinely used empirical distributions is that the 
structural form of the semi-empirical model is developed from 
a mathematical approximation of the random process and 
therefore the underlying structural form and the associated 
model parameters provide some physical insight. Moreover, the 
empirically estimated parameters improve the flexibility of the 
model in capturing the nature of data and therefore the semi-
empirical model performance is comparable to that of empirical 
model. 

The three-parameter distribution model derived in this 
study is based upon the quadratic transformation of linear 
random variables first introduced by Tayfun [1] to study the 
behavior of weakly non-linear wave crests. Tayfun [1] 
theoretically developed a Rayleigh-Stokes probability 
distribution assuming that the linear process to be narrow-
banded and Rayleigh distributed. Additionally, it was assumed 
that the non-linear process could be approximated by second-
order Stokes’ expansion, the first-order and the second-order 
terms are phase-locked, and that the various terms are in phase. 
This theoretical distribution model was a one-parameter 
probability distribution and the model parameter was estimated 
from its theoretical relation with the significant wave height 
and mean period. Tyfun’s model was subsequently modified by 
other researchers [3, 10-11], and their research findings 
indicated a reasonable agreement between the Rayleigh-Stokes 
one-parameter model statistics and the sample statistics of 
simulated and measured ocean wave crests.  Following a 
similar approach, Kriebel [12] developed a two-parameter 
Rayleigh-Stokes model to study the probability distribution of 

wave run-up over large bottom-mounted vertical columns in 
which he incorporated the amplification factor obtained from 
linear diffraction theory. Although the theoretical Rayleigh-
Stokes models are important developments in the field of ocean 
engineering, they have limited flexibility in capturing the 
probability distribution of complex random variables.  

In this study, the semi-empirical approach is utilized to 
develop a three-parameter Rayleigh-Stokes model in which the 
structural form of the distribution is derived theoretically while 
the estimates of the model parameters are obtained from two 
moment based parameter estimation methods, i.e. method of 
moments and method of linear moments. The semi-empirical 
Rayleigh-Stokes model can be applied to estimate the 
probability distribution of a wide range of non-linear random 
variables in the fields of ocean wave mechanics and wave-
structure interaction.  

MODEL DEVELOPMENT 
Based on the second-order Stokes wave theory, the crests 

(or troughs) ζn of a weakly non-linear and narrow banded 
process ηn can be approximated from [1] 

2   n         (1) 

where, ζ  is the crests (or troughs) of the narrow-banded linear 
random variable η, α is the amplification of the linear term, β is 
the amplification of the quadratic term, and  γ is the remaining 
shifting between linear and non-linear variables. Here, crests 
and troughs are defined as maximum and minimum elevations 
between each two consecutive zero-upcrossings, respectively 
(see Fig. (1)). In this model β and γ have real values, α is a 
positive real value, and in order to satisfy the weakly non-linear 
assumption │β│<< α.   
 

 
Figure 1-Variable definition. 

 
It can be shown that the linear term ζ follows a Rayleigh 
distribution law [13] with probability density function (PDF) of  

   2exp 2f x x x    (2) 

From that and application of the random variable 
transformation rule, the PDF, the cumulative distribution 
function (CDF), and the quantile distribution of the non-linear 
variable ζn for β > 0 is obtained as 
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where, u is the probability of exeedance 0 ≤ u <1, χ is defined 
as, 

  1 22 4 x       (4) 

and x > γ. In the case of β < 0, the probability distribution 
functions are derived in the form of 
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where  H x is the step function and has a value of unity for 

x  and is zero for x  . The distributions in Eq. (5) are 

defined for 
2

4
x




     while only  
2

4
x

 


    is 

physically meaningful. The exact analytical form of the 
quantile function is not available for the Rayleigh-Stokes 
model with 0  . An approximate estimate for the quantile 

function can be obtained assuming that (α-χ ) << ( χ+α ) and 
consequently the third term in the  

n
F x  can be ignored with 

respect to the second term; specifically,  

      1 2
2 ln 1 2ln 1

n
x u u u          (6) 

In the special case where α = 0, the Rayleigh-Stokes model 
simplifies to an exponential distribution with distribution 
functions, 
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(7) 

 
The quantile distribution of Rayleigh-Stokes model for 
1.0 1.6  , 10 10     , and 0  is shown in Fig. 

(2). Note that positive and negative   values shift the entire 

quantile distribution up and down, respectively.  
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Figure 2-Rayleigh-Stokes quantile distribution. 

PARAMETER ESTIMATION 
Here, two moment based estimation methods, i.e. method 

of moments (MoM) and method of linear moments (MoLM) 
are utilized to obtain the estimates of the unknown Rayleigh-
Stokes model parameters α, β, and γ. In both methods, a system 
of three equations is obtained by equating the distribution 
statistics with their corresponding sample statistics. The system 
of equations is then solved for the model parameters. These 
methods are briefly discussed in the followings.      

Method of Moments 
For a random variable X , the first distribution moment, 

i.e. mean, is defined as [14] 

   1 X E X   (8) 

and the nth moment is defined as 

   n

n X E X    (9) 

where,   E g X is the expectation of the function  g X  and 

is obtained from 

     1

0
E g X g x u du   (10) 

From that, the distribution moments can be defined in the form 
of,  
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The mean  1 X  represents the centroid of the 

distribution and the variance  2
2X X   is a measure of the 

distribution dispersion around its center. Other useful moments 
are the dimensionless third and fourth moments, respectively 
called skewness   3

3X Xs X  and coefficient of excess 

kurtosis   4
4 3X XK X   . Utilizing the quantile function 

of the Rayleigh-Stokes model given in Eq.s (3) and (6) in the 
integrals in Eq. (11), the relation between the first three 
distribution moments and the model parameters are derived in 
the form of  
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where   is the well-known Gamma function. As shown in this 
equation, the nth  moment is a polynomial of degree n  of the 
parameters   and  , and as expected   is only shifting the 

distribution mean. It should be noted that the relations in Eq. 
(12) can be used for the special case with α = 0 (Eq. (7)).   
For a data set 1 2,  , ,  

sNx x x  of size sN , the unbiased estimates 

of the first three sample moments are obtained respectively 
from [14] 
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  (13) 

 
In order to estimate the three model parameters of the 

Rayleigh-Stokes distribution  ,  , and   with MoM, the 

first three distribution moments (Eq. (12)) are equated with 
their unbiased sample estimators (Eq. (13)), which gives a 
system of equations to be solved for the unknown parameters. 
An iterative numerical solver is applied to solve the system of 
equations. For the exponential distribution defined in Eq. (7), 
the model parameters can be estimated directly from,  
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Method of L-Moments 
Linear moments (L-moments) are developed from 

modifying the probably-weighted moments (PWM) formerly 
introduced by Greenwood et al. [15]. The main difference 
between ordinary moments and PWMs is that ordinary 
moments give greater weight to the extreme tails of the 
distribution. Therefore, distribution moments are more 
successful in representing the extreme values. However, the 
sample moments are highly affected by unexpectedly large 
observations and consequently high order moments are 
considerably more biased than the corresponding probability-
weighted moments. PWMs are considered the desirable sample 
estimators for extreme analysis when the sample sizes are 
limited.  

PWMs, as alternatives to ordinary moments, have been 
used in the field of probability distribution parameter 
estimation [e.g. 16-17]. However, it is difficult to directly 
connect PWMs to the characteristics of the probability 
distribution function, e.g. shape and scale. Hosking introduced 
L-moments from a linear combination of PWMs to overcome 
this issue. For a random variable X  with quantile function of 

 x u , the distribution L-moments are obtained from 

integration of quantile function multiplied by an orthogonal 
function [14], specifically  
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and the function coefficients are obtained from 
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By definition, 1  is the L-location or mean of the 

distribution, 2 , 3 3 2    are L-scale, and L-skewness 

respectively, and are analogous to the ordinary standard 
deviation and skewness. A more complete definition of the 
linear moments and their characteristics can be found in (14). 

Applying the quantile function of Rayleigh-Stokes model, 
Eq.s (3) and (6), in definition of linear moments (Eq. (15)), the 
relations between the distribution moments and the model 
parameters are derived as 
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As shown here, L-moments are linear functions of 
parameters   and   and the shifting parameter   only 

appeared in the L-location.  
The sample L-moment nl of an ordered sample 

1: 2: :      
s s s sN N N Nx x x     of size sN  is defined as [14]  
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and the brackets denote binomial coefficients. Note that, the 
sample L-moment nl

 
is an unbiased estimator of the 

distribution L-moments n . Equating the first three linear 

moments with their corresponding sample statistics, the 
estimates of Rayleigh-Stokes model parameters are obtained in 
the form of 
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For the special case with α = 0 (Eq. (7)), the relations simplify 
into, 
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Izadparast and Niedzwecki [18] compared the performance 
of MoM and MoLM for the three-parameter Rayleigh-Stokes 
model utilizing Monte-Carlo simulations. It was concluded that 
both methods perform reasonably well for large samples (Ns ≥ 
1000) while MoLM is more suited for samples with limited 
size. It was observed that for both methods, large enough 
samples (Ns ≥ 300) are required to obtain reasonably accurate 
estimates of the non-linear term β.  

Extreme statistics 
Assuming that n  

are independent identically distributed 

(i.i.d) random variables, the PDF and CDF of the maxima 

max in N  events can be obtained from the ordered value 

statistics theory, specifically, (19) 
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For large number of N , it can be shown that the Rayleigh-
Stokes probability distribution function belongs to the Gumbel 
maximal domain of attraction and the asymptotic form of 

 
max

x u  can be represented by 
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ln lnN Nx u a b u     (24) 

where Na  and Nb are the extreme distribution parameters and 

can be estimated from their relation with Rayleigh-Stokes 
parameters 
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Assuming that max  follows the Gumbel probability 

distribution function, the first three moments of max
 
are, 
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where 0.5772EM 
 

is the Euler-Mascheroni constant and 

 R z  is the Riemann zeta function that is  3 1.2021R   at 

3z  . Similarly, the first three L-moments of max are derived  
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In Fig. 3, the quantile distribution of Rayleigh-Stokes 
maxima in 1000N   incidents is presented. The distributions 
in Fig. 3 are estimated from applying the Rayleigh-Stokes 
distribution in Eq. (23). It should be noted that for 0   the 

Rayleigh-Stokes probability distribution function has an upper 
bound which is considered in the calculation of distributions 
shown in Fig. 3.  
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Figure 3-quantile distribution of maxima in 1000 

events of the Rayleigh-Stokes model.  

CASE STUDIES 
Two examples are studied here to illustrate the application 

of Rayleigh-Stokes model for estimating the probability 
distribution of non-linear random variables. In the first 
example, the semi-empirical Rayleigh stokes model is applied 
to estimate the probability distribution of measured wave crests 
in the vicinity of an offshore platform. In the second example, 
the probability distribution of random wave power is estimated. 

Disturbed wave crests 
The theoretical one-parameter Rayleigh-Stokes model has 

been widely used to estimate the probability distribution of 
undisturbed ocean wave crests. As incident waves get closer to 
a floating structure they interact with the diffracted and radiated 
waves from the structure. As a result, the disturbed waves in 
the area close to a structure become more non-linear and more 
complex than the original incident waves. It has been observed 
that the one-parameter Rayleigh-Stokes model is not capable of 
capturing the complex nature of the disturbed wave crests [8]. 
However, the theoretical form of the Rayleigh-Stokes model is 
still valid for the disturbed wave crests. Thus, the semi-
empirical Rayleigh-Stokes distribution seems to be an 
appropriate model for estimating the probability distribution of 
disturbed wave crests.   
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Wave power 
According to the linear wave theory, the wave power per 

unit crest length P of regular seas can be expressed as the 
product of the wave group velocity Cg and the total average 
wave energy per unit surface area E, see e.g. [20]. For the deep 
and shallow water limits, indicated with the subscript d and s, 
respectively, the wave powers can be expressed as,  

2
2

3 2
1 2 2

1 2
32

1 20
8

d

s

g
P T H d

g
P d H d





 


 

 

 
 

(28)  

where ρ is the water density, g is the gravitational acceleration 
(9.81m/sec), T is the wave period, H is the wave height, d is the 
water depth, λ is the wave number λ = 2π/L, and L is the wave 
length. The dimensionless form of wave power for deep and 
shallow water limits is defined as (21), 

     
ˆp   d or s d or s d or sP P   2   (29) 

where ζ = H / ση, ση = Hs /4 is the standard deviation of linear 
and narrow-banded surface wave elevation, 

2
2ˆ

64d p s

g
P T H





 

(30) 

and  
3 2

1 2 2ˆ
16s s

g
P d H




 
(31) 

Parameter β is a function of wave period in deepwater limit 
and has a constant value of 1/8 for shallow water limit. It can 
be shown that β asymptotes to 1/8 for narrow banded waves in 
deepwater as well.  

Izadparast, Niedzwecki [21] derived the theoretical 
probability distribution of wave power for different limits. For 
a simplified case of narrow-banded waves, Eq. (29) can be 
considered as a special case of Eq. (1) with α = 0. As an 
alternative to the theoretical model, Rayleigh-Stokes model can 
be used as a data analysis tool to estimate the variability in the 
wave power data.  

DATA ANALYSIS AND RESULTS 

Disturbed wave crests 
To evaluate the performance of the Rayleigh-Stokes model in 
capturing the probability distribution of disturbed wave crests, 
the data sets obtained from a mini-TLP model test investigating 
the behavior of the structure in an extreme environment are 
utilized. The model tests were performed in the wave basin at 
Offshore Technology Research Center (OTRC). Details of this 
experiment can be found in the articles by Niedzwecki et al. 
[22] and Teigen, Niedzwecki, and Winterstein [23]. In this 
study only the measurements of a 3-hr seastate generated from 
JONSWAP spectrum with significant wave height 4.0sH m , 

peak period of 16pT s  and peakedness factor 2.0s   are 

analyzed. The seastate represents the 100-year design wave 
conditions off the West Africa coastline for which the mini-TLP 

was originally designed. The data set used here is measured in 
the long crested waves attacking the structures in the heading 
seas direction (see Fig. 4). The wave timeseries measured over 
the first pontoon (at A2 in Fig. 4) are used in the zero-crossing 
analysis to obtain the wave crests sample. The wave crest 
sample is normalized by the first order standard deviation of 
incident waves   that is estimated from its relation with the 

significant wave height 4 1.0sH   . Next, the sample 

distribution is estimated by using the Kernel probability 
estimation method [24] while the sample tail distribution is 
modified with the generalized-Pareto distribution. The sample 
distribution is then utilized to generate 20,000 bootstrap 
samples to obtain the 95 percent confidence limits (CL) and 
estimate the root-mean-squared error (RMSE). More details of 
the non-parametric probability distribution estimation and 
bootstrap analysis can be found in [25-27]. 

 
 

Figure 4- schematic view of mini-TLP model test 
(dimension scale 1/40). 

   
In Fig. 5 (a), the sample quantile distribution is compared 

with those of the Rayleigh-Stokes distribution with the 
parameters estimated from MoM and MoLM. As shown in Fig. 
5, the Rayleigh-Stokes model is successful in capturing the 
probability distribution of data and the estimates of MoM and 
MoLM converge considerably well. Fig. 5 (b) shows the 
RMSE distribution of the Rayleigh-Stokes quantile as a 
function of the probability of exceedance. As expected the 
RMSE increases on the distribution tail. However, as shown in 
Fig. 5 (b) for this example, the RMSE of Rayleigh-Stokes 
estimates of a relatively large wave crest (~ Hs = 4.0m) is 
considerably small (<0.15m). This is an indication that the 
semi-empirical Rayleigh-Stokes model can be used to model 
the probability distribution of rare events on the sample tail. 
Utilizing the estimates of the Rayleigh-Stokes model 
parameters in Eq. (25) and (26), the estimates of expected 
maximum wave crests are calculated as 4.72 and 4.76 
(equivalent to 4.72m and 4.76m) respectively for MoM and 
MoLM. As expected, due to the relatively large sample size in 
the studied case (Ns = 810), the estimates of MoM and MoLM 
are almost identical.    
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Figure 5- (a) Quantile distributions of wave crests at 
A2, (b) RMSE distribution of quantile estimates. 

Wave power 
     The sample data set of wave power timeseries can be 

obtained from time domain analysis of simulated or measured 
wave timeseries.  Basically, the observations are developed 
from a zero-crossing analysis which in turn allows a wave-by-
wave estimate of the average wave power in each wave cycle. 
More specifically, the wave periods Ti and associated wave 
heights Hi are obtained from the zero-crossing analysis of the 
surface elevation time series.  Next, for each pair of Hi and Ti 
the wave power Pi is estimated using the appropriate relation in 
Eq. (28), and consequently the wave power timeseries is 
developed. The samples are then normalized with the 
characteristic values 

d̂P  and 
ŝP . For illustrative purposes, the 

wave surface elevation time series were generated for the deep 
water limit using a JONSWAP wave spectrum model with 
significant wave height Hs = 4.0m, peak period  Tp = 10.0sec, 
and peakedness factor 0f  γs =3.3. Regarding these values, 
ˆ 78.89dP  KW/m, that is the mean wave power in an ideal 

narrow-banded spectrum with zero width. In order to reduce 
the sample size effects, 60 hours of surface wave elevation 
(about 26,000 waves) were generated with sample rate of 5Hz 
employing uniformly distributed random phase in the range of 
(0, 2π).  

In Fig. 6, the wave power sample PDF and CDF estimated 
from Kernel probability distribution estimation method are 
compared to those of Rayleigh-Stokes model with parameters 
estimated from MoM and MoLM. As can be seen in this figure, 
the simplified Rayleigh-Stokes model is reasonably accurate in 
capturing the variability of sample wave power. Both MoM and 
MoLM converge to almost identical estimates, as the sample 
size is considerably large. It is observed that the semi-empirical 
model over-predicts the PDF of small wave powers pd < 0.5. 
This over-prediction is mainly due to the narrow-banded 
assumption in the Rayleigh-Stokes model that is not fully valid 
in the studied case.   
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Figure 6- probability distributions of wave power (a) 
PDF, (b) CDF. 

   

SUMMARY AND CONCLUSION 
In this study, semi-empirical models are introduced as an 

alternative to theoretical and empirical probability distributions. 
Similar to theoretical models, the structural form of a semi-
empirical model is developed from a mathematical model and 
the model parameters are estimated empirically utilizing sample 
data. As compared to theoretical models, semi-empirical 
models have more flexibility in capturing the probability 
distribution of data and have a wider range of application. The 
main advantage of semi-empirical model to commonly used 
empirical models is that the model parameters of semi-
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empirical models provide some physical insight about the 
process.  

In this study, the focus was on the three-parameter 
Rayleigh-Stokes model of non-linear random variables 
developed from quadratic transformation of linear random 
variable. The unknown model parameters were estimated from 
two moment based parameters estimation methods, i.e. method 
of moments and method of L-moments. For this purpose, the 
explicit relation between the model parameters and the sample 
statistics were derived. These relations were then used to 
estimate the model parameters. The semi-empirical Rayleigh-
Stokes model can be applied to estimate the probability 
distribution of a wide range of non-linear random variables in 
the fields of wave mechanics and wave-structure interaction.  

Two examples were utilized to illustrate the application of 
semi-empirical Rayleigh-Stokes model. In the first example, the 
three-parameter Rayleigh-Stokes model was used to capture the 
probability distribution of measured wave crests in the area 
close to a mini-TLP. The interaction between the incident 
waves and the diffracted and radiated wave from the floating 
structure results in a complex wave field around the structure. 
The results of previous studies indicated that the one-parameter 
theoretical Rayleigh-Stokes model could not adequately model 
the probability distribution of disturbed wave crests. However, 
it was shown here that the three-parameter Rayleigh-Stokes 
model was successful in capturing the complex nature of wave 
crests interacting with the structure. It was also observed that 
the error of the extreme estimates of the semi-empirical 
Rayleigh-Stokes was reasonably small and therefore the model 
can be applied for estimation of extreme statistics of weakly 
non-linear random variables.  

The second example focused on the random viability of 
ocean wave power. It was shown theoretically that a simplified 
Rayleigh-Stokes model with no linear term could be used to 
model the probability distribution of wave power of narrow-
banded waves. The semi-empirical model was used to estimate 
the probability distribution of wave samples obtained from 
simulated wave elevation timeseries. Although the simulated 
waves did not represent a narrow-banded process, it was 
observed that the two-parameter Rayleigh-Stokes model is 
reasonably accurate in representing the probability distribution 
of wave power sample.    
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