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ABSTRACT   
 
The Rayleigh-Stokes model has been widely applied to 
represent the probability distribution of crests and troughs of 
weakly non-linear random processes. In this study, the 
parameter estimates for the three-parameter Rayleigh-Stokes 
probability distribution model are obtained from application of 
two moment-based empirical parameter estimation methods, i.e. 
conventional method of moments and method of linear 
moments. Monte-Carlo simulations are utilized to compare the 
performance of these parameter estimation approaches in 
estimating the parameters of the Rayleigh-Stokes distribution 
and also to evaluate the uncertainty of the extreme statistics. 
Additionally, the effect of sample size on the uncertainty of the 
model statistics is evaluated. Finally, the Rayleigh-Stokes model 
is utilized to estimate the probability distribution of disturbed 
wave crests in beneath a mini-TLP and the model performance 
is evaluated.  
 
KEY WORDS:  Rayleigh-Stokes model, weakly non-linear process, 
probability distribution, method of moments, method of linear 
moments.  
 
INTRODUCTION 
 
The Rayleigh-Stokes model is a well-known probability 
distribution in the field of ocean wave mechanics and is widely 
utilized to estimate the probability distribution of weakly non-
linear wave crests.  The model initially developed by Tayfun 
(1980) for offshore wave crests was based on the assumptions 
that: 1) the waves can be modeled as a narrow-banded random 
process and consequently the wave crests of the linear waves 
follow the Rayleigh law (Longuet-Higgins 1952), and 2) wave 
elevations can be approximated by second-order Stokes wave 
theory. Tayfun’s Rayleigh-Stokes model was a theoretical 
model in which the distribution structure was derived 

analytically and the underlying model parameter were obtained 
from its theoretical relation with the significant wave height and 
mean wave period. The mode structure and the estimate of 
model parameter were subsequently modified by other 
researches (Arhan and Plaisted 1981, Kriebel and Dawson 1991 
and 1993, Tung and Huang 1985, Tayfun 2006). However, the 
different representations of the second-order Rayleigh-Stokes 
model converge to almost identical results for deepwater 
condition. The original one-parameter Rayleigh-Stokes model 
was reasonably successful in estimating the probability 
distribution of extreme offshore wave crests.  However, the 
model did not consider the effects of interaction between 
incident, diffracted, and radiated waves and therefore the 
original model is not appropriate for wave crests close to or 
beneath an offshore structure.  
Following an analogous methodology, Kriebel (1993) developed 
a two-parameter Rayleigh-Stokes model for probability 
distribution of non-linear wave run-up interacting with a fixed 
vertical column in deep water. The parameters of Kriebel’s 
model were estimated from their relation with the significant 
wave height and mean period, and application of the linear 
diffraction theory. Kriebel’s Rayleigh-Stokes model was 
compared with experimental data and was observed to 
underestimate the large crests (Stansberg and Nielsen 2001, 
Izadparast and Niedzwecki, 2009b and 2010). Similarly, Fedele 
and Arena (2005) developed the general two-parameter 
Rayleigh-Stokes distribution for the crests and troughs of 
second-order process and derived the theoretical estimates of the 
model parameters for a) the surface displacement and 
fluctuating wave pressure in an undisturbed field, b) waves in 
front of a rigid wall. Later, Izadparast and Niedzwecki (2009) 
developed a three-parameter Rayleigh-Stokes model for wave 
crests in the vicinity or beneath of an offshore platform.  
Izadparast and Niedzwecki (2009b and 2010a) utilized the 
three-parameter Rayleigh-Stokes model to estimate the 



 

probability distribution of wave run-up over vertical columns of 
offshore structures. In both studies, the model parameters were 
estimated empirically utilizing the method of linear moments 
(L-moments). It was shown that the empirically estimated 
Rayleigh-Stokes model is considerably successful in capturing 
the probability distribution of complex non-linear random 
variables. 
In this study, the parameter estimates for the three-parameter 
Rayleigh-Stokes probability distribution model are obtained 
from application of the conventional method of moments 
(MoM). The conventional moments give more weight to the tail 
of the distribution and therefore they are more suited for use in 
the prediction of extremes than L-moments. However, the 
sample moments, especially the high-order moments, are more 
biased than the corresponding sample L-moments and the 
uncertainty of the small sample L-moments were shown to be 
less (Hosking 1990, Hosking and Wallis 1997).  Here, Monte-
Carlo simulations are utilized to investigate and compare the 
performance of both approaches in estimating the parameters of 
the Rayleigh-Stokes distribution model. Additionally, the 
uncertainty of the extreme statistics estimated from the two 
parameter estimation methods is evaluated and the effect of 
sample size on the uncertainty of the model statistics is studied. 
Finally the performance of Rayleigh-Stokes model is tested over 
measured disturbed wave crests beneath a mini-TLP model test. 
 
MATHEMATICAL BACKGROUND 
 
The wave crests and troughs of weakly non-linear and narrow 
banded waves n  can be approximated from application of 

second-order Stokes wave theory as (Tayfun 1980) 
2

n       (1) 

where   is the narrow-banded linear random variable,  is the 

amplification of the linear term,   is the amplification of the 

quadratic term, and   is the remaining shifting between linear 

and non-linear variables. In this model  and  have real values,

 is a positive real value, and in order to satisfy the weakly 
non-linear assumption │β│<< α.   
In the Rayleigh-Stokes model it is assumed that the linear 
variable   follows a Rayleigh distribution law (Longuet-

Higgins 1952) with probability density function (PDF) of  

   2exp 2f x x x    (2) 

From that and application of random variable transformation 
rule, the PDF, cumulative distribution function (CDF), and 
quantile distribution of non-linear variable for 0  is obtained 

as 
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where for simplicity the following combination is utilized, 

  1 22 4 x       (4) 

The probability distributions in Eq. (3) are defined for x  . In 

the case of 0  , the probability distributions are derived in 

the form of 
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where  H x is the step function and has a value of unity for 

x  and is zero for x  . The distributions in Eq. (5) are 

defined for 
2

4
x




     while only  
2

4
x

 


    is 

physically justified.  The exact analytical form of the quantile 
function is not available for the Rayleigh-Stokes model with 

0  . An approximate estimate for the quantile function can 

be obtained assuming that (α - χ ) << (α + χ ) and consequently 
the third term in the  

n
F x  can be ignored with respect to the 

second term; specifically,  

      1 2
2 ln 1 2ln 1

n
x u u u          (6) 

In Fig. 1, the effects of model parameters on the quantile 
distribution of Rayleigh-Stokes model is shown. In this figure 
the linear amplification factor varies in the range of 
1.0 1.6  ,   varies in the range of 10 10     , and 

  is kept constant 0  . Note that positive and negative   

shift the entire quantile distribution up and down respectively. 
As shown in Eq.s 3 and 5, the second-order Rayleigh-Stokes 
model is a three-parameter probability distribution. In the 
following section the empirical estimation of the model 
parameters are discussed in detail. 
 

 
Fig. 1, Rayleigh-Stokes quantile distribution. 
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EMPIRICAL PARAMETER ESTIMATION 
 
In this study the three parameters of the second-order Rayleigh-
Stokes model is obtained from application of two moment-based 
parameter estimation methods, i.e. conventional method of 
moments (MoM) and method of L-moments (MoLM) (Hosking 
and Wallis 1997).  
 
Method of Moments 
Distribution moments have been widely used to characterize the 
probability distributions and these statistics are applied in 
method of moments to obtain estimates of the probability 
distribution model parameters. For a random variable X , the 
first moment, i.e. mean, is defined as (Hosking and Wallis 1997) 
 

   1 X E X   (7) 

and the nth moment is defined as 

   n

n X E X    (8) 

where,   E g X is the expectation of the function  g X  and is 

obtained from 

     1

0
E g X g x u du   (9) 

From that, the distribution moments can be defined in the form 
of,  
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The mean  1 X  represents the centroid of the distribution and 

the variance  2
2X X   is a measure of the distribution 

dispersion around its center. Other useful moments are the 
dimensionless third and fourth moments, respectively called 
skewness   3

3X Xs X  and coefficient of excess kurtosis

  4
4 3X XK X   . Utilizing the quantile function of the 

Rayleigh-Stokes model given in Eq.s (3) and (6) in the integrals 
in Eq. (10), the relation between the first three distribution 
moments and the model parameters are derived in the form of  
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where   is the well-known Gamma function. As shown in this 
equation, the nth  moment is a polynomial of degree n  of the 
parameters   and  , and as expected   is only shifting the 

distribution mean.  
For a data set 1 2,  , ,  

sNx x x  of size sN , the unbiased estimates 

of the first three sample moments are obtained respectively from 
(Hosking and Wallis 1997) 
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In order to estimate the three model parameters of the Rayleigh-
Stokes probability distribution,  ,  , and   with MoM, the 

first three distribution moments (Eq. (11)) are equated with their 
unbiased sample estimators (Eq. (12)), which gives a system of 
equations to be solved for the unknown parameters. The explicit 
relation of model parameters and the sample moments are not 
available and in order to obtain the solution an iterative 
numerical solver is required.  
 
Method of L-Moments 
Linear moments (L-moments) are developed from modifying 
the probably-weighted moments (PWM) formerly introduced by 
Greenwood et al. (1979). The main difference between ordinary 
moments and PWMs is that ordinary moments give greater 
weight to the extreme tails of the distribution. Therefore, 
distribution moments are more successful in representing the 
extreme values. However, the sample moments are highly 
affected by unexpectedly large observations and consequently 
high order moments are considerably more biased than the 
corresponding probability-weighted moments. PWMs are 
considered the desirable sample estimators for extreme analysis 
and when the sample sizes are limited.  
PWMs, as alternatives to ordinary moments, have been used in 
the field of probability distribution parameter estimation (e.g. 
(Hosking, Wallis, and Wood 1985 and Hosking and Wallis 
1987). However, it is difficult to directly connect PWMs to the 
characteristics of the probability distribution, e.g. shape and 
scale. Hosking introduced L-moments from a linear 
combination of PWMs to overcome this issue. For a random 
variable X  with quantile function of  x u , the distribution L-

moments are obtained from integration of quantile function 
multiplied by an orthogonal function (Hosking and Wallis 
1997), specifically  
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By definition, 1  is the L-location or mean of the distribution,

2 , 3 3 2    are L-scale, and L-skewness respectively, and 

are analogous to the ordinary standard deviation and skewness. 



 

A more complete definition of the linear moments and their 
characteristics can be found in (Hosking and Wallis 1997). 
Applying the quantile function of Rayleigh-Stokes model, Eq.s 
3 and 6, in definition of linear moments, Eq. (13), the relations 
between the distribution moments and the model parameters are 
derived as 
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As shown here, L-moments are linear function of parameters   
and   and the shifting parameter   only appeared in the L-

location. The sample L-moment nl of an ordered sample 

1: 2: :      
s s s sN N N Nx x x     of size sN  is defined as (Hosking 

and Wallis 1997)  
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and the brackets denotes binomial coefficients. Note that, the 
sample L-moment nl

 
is an unbiased estimator of the 

distribution L-moments n . Equating the first three distribution 

linear moments with their corresponding sample statistics, the 
estimates of Rayleigh-Stokes model parameters are obtained in 
the form of 
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EXTREME STATISTICS 
 
The main purpose for including the effect of non-linearity in the 
probability distribution is to obtain more reliable estimation of 
the extreme statistics. Rayleigh-Stokes probability distribution 
in conjunction with the extreme value theory has been used in 
many research studies (Nerzic and Prevosto 1997, Dawson 
2000, Prevosto and Krogstad 2000, and Krogstad and Barstow 
2004) to estimate the ocean wave crests extreme statistics, e.g. 
expected crest maximum. In this approach, it is assumed that 
crests are independent random variables which is not 
theoretically well justified. However, the results of simulations 
by Krogstad and Barstow (2004) indicate that the approximation 
is reasonable accurate for large number of waves 100N  .       
Assuming that crests n  

are independent identically distributed 

(i.i.d) random variables with PDF 
n

f and CDF 
n

F , the PDF 

and CDF of the crest maxima max in N  waves can be obtained 

from the ordered value statistics theory, specifically, 
(Leadbetter, Lindgren, and Rootzen 1983) 
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For large number of waves N , it can be shown that the 
Rayleigh-Stokes probability distribution belongs to the Gumbel 
maximal domain of attraction and the asymptotic form of 

 
max

x u  can be represented by 
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where Na  and Nb are the extreme distribution parameters and 

can be estimated from their relation with Rayleigh-Stokes 
parameters 
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Assuming that max  follows the Gumbel probability distribution, 

the first three moments of max
 
are obtained in the form of, 
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where 0.5772EM 
 

is the Euler-Mascheroni constant and 

 R z  is the Riemann zeta function that is  3 1.2021R   at 

3z  . Similarly, the first three L-moments of max are derived  
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In Fig. 2, the effect of model parameter values on the quantile 
distribution of Rayleigh-Stokes maxima in 1000N   waves is 
presented. The distributions in Fig. 2 are estimated from 
application of Rayleigh-Stokes distribution in Eq. (20). It should 
be noted that for 0   the Rayleigh-Stokes probability 

distribution has an upper bound which is considered in the 
calculation of distributions shown in Fig. 2.  
 

 
Fig. 2, quantile distribution of maxima in 1000 waves of 
Rayleigh-Stokes model.  
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UNCERTAINTY ANALYSIS 
 
To evaluate the uncertainty of empirical parameter estimation 
and to compare the performance of MoM and MoLM on 
samples with different sizes, Monte-Carlo simulation technique 
is utilized. For this purpose,100,000  independent samples are 
generated from the Rayleigh-Stokes quantile with known 
parameters. The sample moments and linear moments are 
estimated for each sample and consequently the estimates of 
model parameters and the statistics are obtained from MoM and 
MoLM. For the uncertainty analysis purposes, the parameter   
is varied in the range of 1.0 1.6  ,   is varied in the range 

of 10 10     , and   is kept constant 0  . Samples 

with sizes sN  2000, 1000, 330, 100 are studied which 

respectively approximate the number of waves in 6hr, 3hr, 1hr, 
17min ocean wave timeseries. Root-mean-squared error 
(RMSE) is utilized as metric to evaluate the uncertainty in the 
estimates. By definition, the RMSE of an estimate ̂  of the true 

value  is estimated from 

    1 2
2ˆ ˆRMSE E        (25) 

The RMSE may be normalized by the true value   to obtain the 

percentage error.  
In Fig.s 3~5, respectively the RMSE distributions of estimates 
of  ,  , and   from both MoM and MoLM are compared. 

For all the three model parameters the RMSE of both methods 
varies linearly with   and therefore normalizing the error with 
 results in an identical distribution for different values of  . 
As expected and also shown in Fig.s 3~5, the error increases 
with the decrease in the sample size. The change in the error 
distributions from 2000sN   to 1000sN  is relatively mild 

while the error distributions for 1000sN   indicate drastic 

increases. The error of the estimates of MoM and MoLM for 
large samples 1000sN   is reasonably close. However, the 

difference between the error distributions is more sensible for 
smaller samples 330sN  . It is also observed that MoM is more 

sensitive to the sample size. The distributions in Fig.s 3~5 
clearly indicate that error distributions of MoLM is a linear 
function of parameter   while that of MoM is a non-linear 

function of  . In general, MoM performs better for samples 

with negative  , while MoLM has smaller errors for samples 

with positive  . Regarding the distributions in Fig. 3, one can 

see that  RMSE  is highly dependent to the value of   and 

the dependency increases with decrease in the sample size. The 
dependency to the value of   is much milder in case of 

 RMSE  and  RMSE  shown respectively in Fig.s 4 and 5. 

As can be seen in Fig. 4, the error in the estimates of  from 

small samples is almost of the same order of magnitude as of 
itself which indicates that large enough samples are required to 
obtain reliable estimates of the non-linear contribution. 
 

 
Fig. 3, RMSE distributions of estimates of parameter  .  
 

 
Fig. 4, RMSE distributions of estimates of parameter  .  
  

 
Fig. 5, RMSE distributions of estimates of parameter  .  

 
Utilizing the parameter estimates from MoM and MoLM in 
conjunction with the Eq. (23) and the extreme parameters Eq. 
(22), the estimates of expected crest maximum in 1000N   
waves are estimate and the error distributions are presented in 
Fig. 6. In this figure, the distributions are normalized with 
respect to the true  maxE  . The normalized RMSE 

distributions for different values of  converge to an identical 
distribution and as shown in Fig. 6, the dependency of the 
distributions to the value of   is relatively small. Estimates of 

both methods indicate an increase in the normalized error with 
the increase in the value of   which is more sensible in the 
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case of MoM and smaller samples. More importantly, it is 
observed that MoLM is more efficient in estimating the extreme 
statistics. The difference between the performance of MoM and 
MoLM is relatively small for large samples 1000sN   while 

MoLM significantly performs better for small samples. For the 
studied range of parameters, the error in the estimates of 

 maxE   in  1000N   waves obtained from MoLM remains 

less than 4.5 percent of the true value for 1000sN  and the 

error remains less than 14 percent of the true value for 
100sN  . The extreme estimates of MoM are expected to have 

errors in the range (4.2-6.7) and (14 - 20) percent of the true 
value for 1000sN   and 100sN  respectively.         

 

 
Fig. 6, RMSE distributions of estimates of parameter  maxE  in 

1000N   waves.  
 
ANALYSIS OF MEASURED DATA 
 
Here, the performance of the Rayleigh-Stokes model with 
parameters estimated by MoM and MoLM are compared on 
measured data. The data sets utilized here are obtained from a 
mini-TLP model test investigating the behavior of the structure 
in extreme environment. The model tests were performed in the 
wave basin at Offshore Technology Research Center (OTRC).  
Details of this experiment can be found in the articles by 
Niedzwecki et al. (2001) and Teigen, Niedzwecki, and 
Winterstein (2001). In this study only the measurements of a 3-
hr seastate generated from JONSWAP spectrum with significant 
wave height 4.0sH m , peak period of 16pT s  and 

peakedness factor 2.0s   are analyzed. The seastate represents 

the 100-year design wave conditions off the West Africa 
coastline for which the mini-TLP was originally designed.  The 
Rayleigh-Stokes model is utilized to estimate the probability 
distribution of wave crests at a) over the front pontoon A2 and 
b) at the center of the moon-pool beneath the structure A3 (see 
Fig. 7 for probes location). In the studied cases, the long crested 
waves are attacking the structures in the heading seas direction. 
The wave crest is defined as the maximum wave elevation in 
between two successive zero-upcrossings and the wave crest 
samples are obtained by zero-crossing analysis of measured 
wave timeseries. The wave crest samples are normalized by the 
first order standard deviation of incident waves   that is 

estimated from its relation with the significant wave height 
4 1.0sH   .  

 
 

 
 

 
 
 
 
 
 
 
 
 
Fig. 7, wave probe location (dimension scale 1/40). 
 

 
(a) 

 
(b) 

Fig. 8, Quantile distributions, (a) wave crests at A2, (b) wave 
crests at A3. 
 
In Fig. 8, the sample quantile distributions are compared with 
those of the Rayleigh-Stokes distribution with the parameters 
estimated from MoM and MoLM. The sample distribution is 
estimated from application of semi-parametric approach in 
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which the major part of the distribution is estimated by Kernel 
non-parametric probability estimation method and the tail 
distribution is modified with generalized-Pareto distribution. 
The sample distribution is then utilized in bootstrap analysis to 
obtain the 95 percent confidence limits (CL) and the estimates 
of the RMSE. More details about the semi-parametric 
probability estimation and bootstrap analysis can be found in the 
articles by Efron 1979, Silverman and Young 1987, and Caers 
and Maes 1998. As shown in Fig. 8, the Rayleigh-Stokes model 
is successful in capturing the probability distribution of data and 
the estimates of MoM and MoLM converge considerably well.   
 

 
(a) 

 
(b) 

Fig. 9, RMSE distribution of quantile estimates for, (a) wave 
crests at A2, (b) wave crests at A3. 
 
In Fig. 9, the RMSE of the quantile distributions of Rayleigh-
Stokes models are presented. The RMSE distributions are 
estimated from utilization of 20,000 bootstrap samples. As 
shown in Fig. 9, the error in the estimates of Rayleigh-Stokes 
models remain below 0.2 (equivalent to 0.2m) in these example 
which once more indicates that Rayleigh-Stokes model is robust 
in estimating the probability distribution of data. The 
distributions in Fig. 9 indicate a reasonable agreement between 
the estimates of MoM and MoLM. The difference between 

estimates of MoM and MoLM is more sensible on the tail 
distribution of the wave crests at A3 (see Fig. 9 (b)). As 
expected, the RMSE of the quantile estimates increases on the 
tail distribution which is mainly because of sparse data points in 
this area. The sample distribution in Fig. 8 (b) indicates a 
sudden slope decrease in the tail distribution with probabilities 
of 28 10P    which has not been fully captured by the 

Rayleigh-Stokes model. Consequently, the RMSE distributions 
in Fig. 9 (b) show some unexpected fluctuations for the 
probabilities 28 10P   .  

The estimates of expected crest maximum in 1000N   waves 
are compared in Table 1. The MoM and MoLM are estimated 
almost identical extreme statistics for the studied cases. Based 
on the statistics given in Table 1, the maximum wave crest in 

1000N   waves close to the structure is expected to be 

 max 4.72E a m which is 1m (~26 percent) higher than that of 

the linear ocean waves  max 3.72E a m . This shows the 

importance of including the non-linear terms as well as the 
contribution of diffracted and radiated waves in estimation of 
the air-gap demand.   
 
Table 1, estimates of expected maximum crest in 1000N   
waves.  
 

Method Crests at A2 Crests at A3 
MoLM 4.76 4.72 
MoM 4.72 4.73 

 
SUMMARY AND CONCLUSIONS 
 
Three-parameter Rayleigh-Stokes model was studied as an 
semi-empirical probability distribution in which the structural 
form was developed analytically from the second-order Stokes 
wave theory of weakly non-linear and narrow-banded processes 
and the estimates of the underlying model parameters were 
obtained empirically. For empirical parameter estimation 
purposes, two moment-based models, i.e. method of moments 
(MoM) and method of L-moments (MoLM) were utilized. The 
relations between the distribution moments and model 
parameters were derived. Consequently the relations were used 
to directly connect the model parameters to the sample statistics. 
The application of Rayleigh-Stokes model in extreme analysis 
was briefly discussed and the asymptotic form of the crest 
maxima distribution and statistics for large number of waves are 
derived. 
The uncertainty of the model statistics estimated from MoM and 
MoLM was evaluated and the performance of these methods on 
samples with different sizes was compared. For this purpose, 
numerous Monte-Carlo samples were generated from Rayleigh-
Stokes quantile with various sets of initial parameter values. The 
results of the uncertainty analysis indicated that the MoM and 
MoLM perform similarly well for relatively large samples 

1000sN  , while method of L-moments found to be the better 

alternative for small samples. It was observed that the root-
mean-squared error distributions of the model parameters  , 
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 , and   estimated from MoM and MoLM are linear functions 

of the parameter  . In the case of MoLM, the error 
distributions of parameter estimates are linear functions of 
parameter  , while those of MoM vary nonlinearly with  . 

The parameter estimates of MoM found to have less error for 
0  than those of MoLM while the error of the parameter 

estimates of MoLM were less 0  . It was concluded that, in 

order to have reasonably accurate estimates of the non-linear 
term, large enough 330sN   samples are required for both 

methods. The uncertainty analysis of extreme statistic indicated 
that MoLM is more robust than MoM in estimating the extreme 
statistics.  
In the final section of this article, Rayleigh-Stokes model was 
utilized to estimate the probability distribution of wave crests 
beneath a mini-TLP model test. The data sets used here were 
measured during a relatively benign environmental condition in 
which wave timeseries can be approximated as weakly non-
linear processes. It was observed that Rayleigh-Stokes model 
with empirically estimated parameters is considerably accurate 
in estimating the probability distribution of complex wave crests 
over the pontoon and inside the moon-pool. In the studied cases, 
the estimates of MoM and MoLM are found to be in a close 
agreement for the major part of the distribution, while the 
difference between their estimates of the tail distribution is more 
sensible. It should be noted that, the Rayleigh-Stokes model is 
not sensitive to the local changes of the tail distribution which 
causes uncertainty to the model estimates of extreme statistics.    
Rayleigh-Stokes model was utilized to estimate the extreme 
wave crests in the vicinity of the Mini-TLP during the 100-year 
design wave conditions off the West Africa coastline. The 
expected maximum wave crest elevation in the vicinity of the 
structure was calculated to be about 4.72m which is 
significantly higher than the expected maximum crest elevation 
of linear ocean waves 3.72m. The results of this study, once 
more, confirmed that the contribution of non-linear term and the 
wave-structure interaction effects should be considered in the 
deck elevation design of offshore platforms.  
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