sof<mark>sofec</mark>ared

Deep Water Mooring Systems

Omar DeAndrade Engineering Manager

May 2nd, 2017

SOFEC Inc.

- Engineering and Construction Company based in Houston, Texas
- Founded in 1972
- Acquired by MODEC, Inc. in December 2006
- Core Technologies
 - Marine Import/Export Terminals
 - Specialty Mooring Systems
- Approximately 200 Employees in Houston
 - Project Execution: Project Management, QAQC, Fabrication, Procurement, Project Engineering Management, Most Engineering Disciplines
 - Product Development and Mooring Technology: Product Development and R&D, Hydrodynamics, Mooring Technology
 - Business / Project Acquisition: Financial and Commercial, Sales & Marketing.
- SOFEC's Reputation in the Industry
 - Dedicated Workforce, Highly Qualified and Experienced
 - Quality, High Performing Turret Mooring Systems, with Minimal Maintenance

SOFEC Major Products and Projects Summary

External Turret: 27

Spread Moored: 16

Internal Disconnecectable Turret: 5

Tower Yoke: 5

Internal Permanent Turret: 4

CALM/SALM: 60

SOFEC FPSO Mooring Project Locations Eastern Hemisphere

Mooring Systems for Floating Production Units

External Turret: Tandem Offloading

Spread: Tandem Bow or Stern Offloading

Internal Turret: Tandem Offloading

Tower Yoke: Tandem Offloading

SOFEC Turret Mooring Systems: 41 to date

- SOFEC's Turret Mooring Design and Operational Experience from 1988 - 2017
 - 4 Permanent Internal Turret Mooring Systems
 - 5 Internal Disconnectable Turret Mooring Systems
 - 27 External Turret Mooring Systems (industry trend for turret types)
 - 5 Tower Yoke Systems
- Overall 260 years of operational life
 - Longest duration: 24 years on site (Safer FSO, Yemen, 1988)

sorec

50729

Most Common Mooring Systems for Floating Production Units Turret Vs. Spread Moor

Comparative Summary

	Turret-Moored	Spread-Moored
Vessel Orientation	360 degree weathervaning	Fixed orientation, can impact flare
Environment	Mild to extreme,	Mild to moderate,
	directional to spread	uni- to fairly directional
Field Layout	Fairly adaptable, partial to	Prefers flowline arrangement to
	distributed flowline arrangements	approach beam-on
Riser Number & Arrangement	Requires commitment,	Can be designed for flexibility,
	moderate expansion capability	additional tie-ins
Riser Systems	Location of turret (bow) requires	Adapts to various riser systems,
	robust riser design	combinations of various types
Stationkeeping Performance	Number of anchor legs,	Larger number of anchor legs,
	offsets minimized	offsets variable
Vessel Motions	Weathervaning capability	Dependent on relative vessel/
	reduces motions	environment directionality
Vessel Arrangement	Turret provides "compact"	Components spread on deck,
	load and fluid transfer system	requires extensive interfaces
Offloading Performance	FPSO typically aligned with	Dependent on vessel/
	mean environment	environment orientation

Most Common Mooring Systems for Floating Production Units Internal Vs External Turret

External Cantilevered Turret Systems: most popular

- ⇒ Applications in mild to moderate environments: West Africa, Brazil, Southeast Asia, Middle East, South Pacific
- \Rightarrow Permanent systems (generally)
- \Rightarrow Smaller number of risers
- \Rightarrow Shallow to deep water depth applications

Generally less costly than internal turrets, but not ideal for large, deep water fields in the Gulf of Mexico

External Turret Mooring Systems

FPSO PSVM

Tullow Ten External Turret Mooring [4200 MT]

- Offshore Ghana
- ~1450 m water depth
- VLCC FPSO
- 3 X 3 Anchor Leg System
- 17 Risers & 7 Umbilicals
- DNV Class
- Fabricated @ Keppel Fels

External Turret Mooring Systems

Yepco Red Sea, Yemen

Amoseas Anoa, Indonesia

Shell Todd Maui Β. **New Zealand**

Chevron Escravos, Nigeria

PEMEX Cantarell, Mexico

Petronas (MASA), Malaysia

Nexen Buffalo, Australia

Vietsovpetro 01, Vietnam

Shell Bijupira-Salema, Brazil

PTTEP Bongkot, Gulf of Thailand

CLJOC Su Tu Den, Vietnam

CNR Baobab lvoirien Côte D'Ivorie,

PEARL Jasmine Thailand

sorec

KNOC Rong Doi Vietnam

Petrobras PRA-1 Brazil

JVPC Rang Dong

FSO Erawan Thailand

BP PSVM Angola

OSX3 FPSO

Tullow Jubilee Ghana

UOTE FSO

HLJOC TGT FPSO Vietnam

Swivel Access Structure

Swivel Stack (Production/Controls)

- Manifolds + Pig Launching/Receiving

E-House + Subsea Controls + HPUs

Anchor Leg + Riser Pull-In Equipment

- Wheel & Rail Bearing System

Turret Shaft

Chain Supports

Anchor Legs

Risers & Umbilicals

Petro-Canada Terra Nova FPSO (Eastern Canada)

- Awarded 1/98
- Installed 10/01
- 95m water depth
- New-build vessel
- 193,000 MT displacement
- 950,000 bbls storage
- 19 risers & umbilicals

sorec

- Disconnect for Icebergs / Pack-Ice Only
- Stay Connected in 100year storm
- Controlled Disconnect: 4

SOFEC Disconnectable FPSOs

Santos Mutineer-Exeter, NW Australia (2005) 10 risers & umbilicals, 160m water depth

BHPB Stybarrow, NW Australia (2007) 12 risers & umbilicals, 850m water depth

BHPB Pyrenees (2009) 12 Risers & 3 Umbilicals, 200m water_depth

Stybarrow Turret Mooring (Turret fabricated at MMHE)

- Swivel Access Structure
- Swivel Stack —
- Manifold Piping
- Riser Deck
- Main Bearing ____
- Turret Shaft
- Connector
- Risers & Umbilicals
- Spider Buoy
- Anchor Legs

Tower Yoke Mooring Systems

Water Depth = 24m Mild Environment 240 mmscfd @ 153 barg SBS Offloading

Spread Mooring Systems

As an Ocean Engineer in the Oil & Gas offshore industry...

- Involved in All Mooring-Related Project Phases
 - Conceptual design and preliminary analysis (FEED)
 - Detailed design and class approvals, schedule, budget, project sanctioning (reality sets in)
 - Model Testing (the moment of "truth" for the Ocean Engineer)
 - Specifications and Construction (what it really costs)
 - Offshore installation (it looked good on paper!)

Mooring System Project Life-Cycle – from concept to installation

West Africa Environmental Design Criteria

 \Rightarrow 2.0+ m/s (3.9kts) Congo River Outflow

West Africa Environmental Design Criteria

Environmental Design Criteria

⇒Squall-dominated mooring loads and offsets → time-domain analysis 100-yr squall wind 28 m/s (55kts)

West Africa Environmental Design Criteria

Environmental Design Criteria

 \Rightarrow Swell-dominated bearing inertia loads \rightarrow frequency-domain analysis 100-yr Swell Hs = 4.5m

Numerical Modelling of Risers and Mooring

Simulation of Buoy Pull-in Operation

Model Test :: Extreme Events

Performance in Pack-Ice

Disconnect Tests

Disconnect under 5,000 MT load

Support the Design of Mechanical Components

Environmental Design Criteria

 \Rightarrow Fatigue-dominated chain sizing

 \Rightarrow Out-of-Plane bending (OPB) fatigue \rightarrow Dual Axis Chain Supports

Support the Design of Mechanical Components

Mooring Components

⇒Dual axis chain supports, 5.4m long. Reduces OPB on top chain.

Support the Design of Mechanical Components

Mooring Components

 \Rightarrow Over-boarding of male Ballgrab and bottom chain

Mooring Components

Ball Grab Subsea Connector and Suction Pile

Mooring Leg Hookup

