OTC2015 2015 Offshore Technology Conference

4–7 May 2015 HOUSTON, TEXAS, USA

OTC-26058-MS Stationkeeping Technology for Frontier Deepwater Floating Systems

Arun S. Duggal Amir H. Izadparast Vijay K. Pothuganti

sofec

Overview

- Floating Systems Production Systems Water Depths from 20m to 3,000m
 - Various host production platforms
 - Various riser & mooring systems
- New Frontier for Deepwater:
 - o 3,000 to 4,500 meters
- Key Drivers for Stationkeeping Technology Selection
- Focus on Mooring Technology Required
- Case Study:
 - FPSO in varying water depths
 - Focus on mooring response as a function of mooring line stiffness

2015 Offshore Technology Conference OTC-26058-MS • Stationkeeping Technology for Frontier Deepwater Floating Systems • Arun S. Duggal

Frontier Deepwater Regions of the World

Key Drivers for Stationkeeping Design

2015 Offshore Technology Conference

2015 Offshore Technology Conference

Floating Production Platforms

Riser Systems

2015 Offshore Technology Conference

Stationkeeping Technology

- Host Floating Production System Dependent
 - Motion characteristics
 - Degree of coupling between floater, mooring and risers
- Riser System Requirements
 - o Offsets and motions (Floater dependent)
- Spread Moored Systems
 - All floater types including FPSOs
- Turret Moored (FPSOs) Systems
 - o Internal; External; Disconnectable
 - o Thruster-Assisted or DP

DP or Thruster Assisted FPSOs

- Several Deepwater Drillships in Operation for over 10 years
 - Long track record of performance
 - Designed for maintain station up to 10-year hurricane Ο conditions
- Several Early Production / Well Test DP Vessels
 - o MV Seillean
 - o Pipa II
- DP FPSOs
 - o Munin
 - Helix Producer 1
- Thruster-Assisted FPSOs
 - Several in the North Sea

DP FPSOs

OTC 16710

2015 Offshore Technology Conference

Deepwater Mooring Design (2,000 to 3,000 meters)

- Riser Offset Requirements
 - Typically range from 5 to 10% of water depth
 - Depends on environmental conditions, riser type, etc.
- Mooring Components
 - $\circ~$ Chain: Grades up to R5 $\,$
 - Polyester rope
 - o Suction piles, torpedo piles or plate anchors

Frontier Deepwater Design (3,000 to 4,500 meters)

- Offsets tend to be smaller (mooring system is typically more efficient)
- Offsets very dependent on Riser Type
 - Conventional coupled risers (Lazy-wave): ~ 5 to 10%
 - Decoupled risers (Hybrid): ~5% or less
- Offset Control
 - Larger number of anchor legs (also controls anchor loads)
 - Higher pretension
 - Introduce stiffer mooring components, e.g. high modulus fiber ropes
- Installation Equipment
 - Mooring design should consider installation requirements
 - o Could limit maximum component sizes and lengths
 - Should also allow for easy maintenance / replacement in the future

High Modulus Synthetic Mooring Rope

- Most Ultra-Deepwater Mooring Systems use Polyester Rope
 - High strength to weight ratio
 - High reliability / very good long-term performance
 - o Relatively low cost
- High Modulus Fiber Ropes:
 - o Effective axial stiffness 3 to 4 times that of polyester
 - Higher strength to weight ratio
 - Higher cost (2 to 4 times that of polyester rope)
- High Modulus Fiber Ropes being considered:
 - HMPE (DM20)
 - o LCP (Vectran)
 - o Aramid (Kevlar)

Static Modulus: Polyester Rope and Kevlar

2015 Offshore Technology Conference

Case Study: FPSO with Internal Turret Mooring System

- Stationkeeping System: Internal Turret
- Anchor leg system: 9 taut legs (3 groups of 3 legs)
- Anchor leg components:
 - o Top chain
 - o Synthetic Rope
 - ➤ 100% Poly
 - ➢ 50% Poly + 50% HM
 - ≻ 100% HM
 - o Bottom chain
- Vessel: Typical VLCC vessel
- Water Depth:
 - \circ WD = 1,500m, Anchor Leg R = 1,982m, Top T = 175MT
 - \circ WD = 3,000m, Anchor Leg R = 3,215m, Top T = 200MT
 - WD = 4,500m, Anchor Leg R = 5,005m, Top T = 225MT

Case Study: Mooring System Details

Case Study: Dynamic Characteristics

Case Study: Dynamic Characteristics

Case Study: Extreme Analysis

Case Study: Fatigue Analysis

	Primary Wave			Secondary Wave			Wind data		Current data		
LC	Hs	Тр	Dir	Hs	Тр	Dir	Ws	Dir	Vc	dir	Prob.
	(m)	(sec)	(deg.)	(m)	(sec)	(deg.)	(m/sec)	(deg)	(m/sec)	(deg)	
1	2.2	6.8	195	0.8	7.0	131	9.8	180	0.2	220	5.2%
2	2.1	6.9	180	0.9	8.3	102	9.9	180	0.3	206	26.0%
3	2.0	6.7	165	0.8	8.1	101	9.7	180	0.3	195	21.2%
4	1.9	7.1	150	0.6	5.3	141	8.2	180	0.3	199	10.1%
5	1.7	8.6	135	0.4	4.0	204	5.7	180	0.2	205	5.4%
6	1.6	8.7	120	0.6	4.0	192	5.8	180	0.3	211	4.7%
7	1.6	9.2	105	0.7	4.1	176	5.8	180	0.3	195	5.5%
8	1.6	10.0	90	0.8	4.6	175	6.0	180	0.3	212	4.8%
9	1.8	10.9	75	1.0	4.7	172	6.7	180	0.3	211	4.5%
10	2.0	11.6	60	1.1	5.1	168	7.2	180	0.3	215	4.6%
11	2.0	11.8	45	1.1	4.9	168	7.1	180	0.2	216	3.4%
12	2.2	12.1	30	1.1	4.9	170	7.2	180	0.2	194	4.1%
13	2.3	11.4	15	1.0	4.3	188	7.0	180	0.2	239	0.5%
14	1.7	6.6	300	0.5	4.5	218	4.7	180	0.2	227	0.1%

Dynamic Global Analysis

2015 Offshore Technology Conference

Summary

- Stationkeeping Technology for Frontier Deepwater:
 - Extension of existing technology is possible
 - Understand the seabed conditions / soil strength
 - o Pay attention to the system dynamics
 - Study anchor leg dynamics along the line length
 - Study anchor leg seabed interaction
 - Integrated design of host production facility, mooring and riser systems
- Offset Control for Riser Systems:
 - o Understand the trade-offs!
 - Tune the mooring stiffness to optimize the performance
 - ➢ Offset
 - Maximum Loads
 - Fatigue Loading

OTC2015 2015 Offshore Technology Conference

4–7 May 2015 HOUSTON, TEXAS, USA

Thank You!

Questions?

Arun S. Duggal

arun.duggal@sofec.com www.sofec.com

Slide 22