

Empirical Estimation of Probability Distribution of Extreme Responses of Turret Moored FPSOs

Presentation By: Amir Izadparast

Authors: Amir Izadparast Arun Duggal

SOFED

SOFEC

Background

Table of Content

- Non-linear Responses of Turret Moored FPSOs
- Probability Distributions
- Distribution Parameters
- Extreme Statistics
- Case Studies
- Results
- Concluding Remarks

Non-linear Responses of Turret Moored FPSOs

Mooring Leg Tension

- Windward
 - Low-Frequency
 - Wave Frequency
 - Total Tension

• Leeward

- Low-Frequency
- Wave Frequency
- Total Tension

Vessel Offset

- Along the vessel length (X)
 - Low-Frequency

Sources of Non-linearity

- Mooring System Stiffness
- Loading Nature (low-drift forces, drag, etc.)
- Environmental Condition (steep waves)
- Damping

Probability Distributions

Normalized Random Variable

$$\zeta = \frac{a - \mu_{\eta}}{\sigma_{\eta}}$$

Model	Transformation	Distribution	
Linear Random Variable (narrow-banded)		$F_{\zeta}(x) = 1 - \exp\left(-\frac{x^2}{2}\right)$	Rayleigh
Non-Linear Random Variable	$\zeta_n = \frac{\zeta^2}{2}$	$F_{\zeta_n}(x) = 1 - \exp(-x)$	Exponential
	$\zeta_n = A \left(\frac{\zeta^2}{2} + B \right)$	$F_{\zeta_n}(x) = 1 - \exp\left(-\left(\frac{x}{A} - B\right)\right)$	Stansberg
	$\zeta_n = \frac{\lambda}{2^{1/\kappa}} \zeta^{2/\kappa} + \rho$	$F_{\zeta_n}(x) = 1 - \exp\left(-\left(\frac{(x-\rho)}{\lambda}\right)^{\kappa}\right)$	Weibull
	$\zeta_n = \alpha \zeta + \beta \zeta^2 + \gamma$	$F_{\zeta_n}(x) = 1 - \exp\left(-\frac{(\chi - \alpha)^2}{8\beta^2}\right)$	3-Par Rayleigh
orec		$\chi = \left(\alpha^2 + 4\beta(x-\gamma)\right)^{1/2}$	ISOPE-2013 Anchorage

Distribution Parameters

Model	Distribution	Parameters	
Linear Random Variable (narrow-banded)	Rayleigh	$\mu_{\eta}, \sigma_{\eta}$	
Non-Linear Random Variable	Exponential	μ_η,σ_η	
	Stansberg	μ_η,σ_η , A, B	
	Weibull	$μ_η, \sigma_η, \kappa, \rho, \lambda$	
	3-Par Rayleigh	$\mu_{\eta}, \sigma_{\eta}, \alpha, \beta, \gamma$	

Extreme Statistics

Ordered Value Statistics Theory (N independent cycles):

Expected Maximum:

Asymptotic Distribution of Large N (Gumbel)

$$F_{\zeta_{\max}}(x) = \left[F_{\zeta_n}(x)\right]^N$$

$$E(\zeta_{\max}) = \int_{-\infty}^{+\infty} x \, dF_{\zeta_{\max}}(x)$$

$$F_{\zeta_{\max}}(x) = \exp\left(-\exp\left(-(x-a_N)/b_N\right)\right)$$

$$E(\zeta_{\max}) = a_N + b_N \gamma_{EM}$$

Number of Cycles (N)

SOFec

Wave frequency	Narrow-banded process \longrightarrow	$N = T_{storm} / T_z$
Low frequency	Non-narrow-banded– Correlation \longrightarrow time - Stansberg's formula	$\tau = 1/2\omega$ ω bandwidth of the spectrum
Combined Process	Difficult to estimate \longrightarrow	Number of observed cycles

Case Studies: General Info

Deepwater System

Shallow-water System

Water depth (m)	~2000m
Area	West Africa
100Yr Condition	Hs = 4.5m, Tp = 17sec, $Ws = 6.3m/sec$
Mooring System	3G*4L Taut mooring legs
Mooring Legs	Chain-Polyester-Chain

~45m

South East Asia

Hs = 10m, Tp = 16sec,Ws = 32m/sec

4G*3L Catenary mooring legs

Chain-Heavy Chain-Chain

Case Studies: Response Characteristics

Case Studies: Response Characteristics

Results: Wave-Frequency

Results: Low-Frequency

Results: Total

Results: Extreme Statistics

	Model	Windward			Leeward		
Deep water		Wave	Low	Total	Wave	Low	Total
		Freq.	Freq.		Freq.	Freq.	
	Sample	4.2	3.2	4.2	4.1	3.1	3.9
		(5.4 - 3.3)	(3.5 - 2.8)	(5.2 - 3.6)	(5.3 - 3.4)	(4.1 - 2.6)	(4.9 - 3.3)
	Rayleigh	3.8	2.7	3.7	3.8	2.8	3.7
	Exponential	7.1	3.8	7.0	7.1	4.0	7.1
	3-Par. Rayleigh	3.8	3.3	4.3	4.0	3.1	3.7
	3-Par. Weibull	3.9	3.1	4.1	4.0	3.1	3.8
	Stansberg Exp.		3.4			3.5	

			Windward			Leeward		
	Model	Wave	Low	Total	Wave	Low	Total	
		Freq.	Freq.		Freq.	Freq.		
	Sample	5.8	4.1	5.8	5.6	5.0	5.4	
		(7.3 - 4.9)	(4.5 - 3.6)	(6.9 - 5.1)	(5.8 - 5.4)	(5.2 - 4.6)	(6.4 - 4.4)	
Shallow	Rayleigh	3.8	3.2	3.7	3.8	3.2	3.7	
water >	Exponential	7.3	5.2	6.8	7.2	5.2	7.0	
	3-Par. Rayleigh	6.3	4.7	6.4	5.4	4.8	6.1	
	3-Par. Weibull	5.6	4.4	5.7	5.0	4.5	5.3	
	Stansberg Exp.		4.5			4.5		

Concluding Remarks

- The probability distribution of mooring leg tension and vessel offset in extreme environmental condition were studied.
- Two case studies of shallow water and deepwater turret moored FPSOs are considered.
- The characteristics of probability distribution of wave-frequency, low-frequency, and the combined tension are studied.
- The probability distributions of tension in the windward and leeward lines are studied.
- The performance of widely used distribution models as well as the three-parameter Rayleigh distribution model is evaluated over the experimental data.
- The effect of distribution model on the predicted extreme values is discussed.

SOFEC

SOFEC

Thank You!

SOFEC

