susciences and the second seco

The Impact of Ice Loading on Single Point Moored Production Units

Chen Jainsky Quanxin Xia

Arun Duggal

SOFEC

SOFEC, Inc. 27 June 2012

Overview

- Introduction
- SOFEC Experience with Ice Loads on SPM Production Units
 - Offshore Newfoundland
 - Barents Sea
 - Bohai Bay
- Some General Observations on Model Testing and Mooring Design

SDF2C

Terra Nova FPSO – Grand Banks

Terra Nova Design Environment

	1-Year		100-Year		
	Waves	Hs = 10.9 m Tp: 12.9 – 16.0 sec	Hs = 16.0 m Tp: 15.7 – 20.2 sec	171	
	Wind	Vw = 28.8 m/s	Vw = 39.6 m/s		
	Current	Vc = 1.0 m/s	Vc = 1.3 m/s		
	Pack Ice	0 – 30%	> 50 – 70%		
	lcebergs	<100,000 MT	>100,000 MT	31	

Disconnect Criteria:

- Approaching Iceberg: >100,000 MT
- Pack Ice Coverage: >50% &/Or >0.3 m thick

Ice Load Tests- NRC-IOT, St John's Newfoundland

- Pack-Ice Tests:
 - Ice Tank (90 m long X 12 m wide)
 - Model Scale 1:27.5
 - 3 level ice thicknesses: 0.3, 0.5 and 1.0m
 - Pack Ice from 100% to 50% coverage with variation in floe size
 - Various Ice Drift Speeds up to 1 m/s
 - Head-on and Rotation Tests
- Iceberg/Bergy Bit Impact Tests
 - Ocean Basin
 - Model Scale 1:44.5
 - Iceberg of 100,000 MT, current only
 - Bergy Bit of 3,500 MT, waves and current

SOFED

Performance in Pack-Ice

Pack Ice Load on Moored FPSO

Floe Thickness = 1.0 meter

50% Coverage
85% Coverage
85% Rotation
100% Unbroken

Impact of 100,000 MT Iceberg with FPSO

Iceberg & Bergy Bit Impact Loads

Barents Sea: Project General Information

- Site Condition
 - Ice Condition:
 - <u>Sea ice</u>: Mostly 1st year ice.
 - Level ice (typical 100yr RP ice thickness = 2 m)
 - Ice ridge (typical 100yr RP ice ridge keel depth = 21m)
 - Rubble field (typical 100yr RP consolidated ice rubble field depth = 9m)
 - <u>Iceberg</u>: Occurs on average about every 20 years. Not considered for mooring design
 - Open Sea Condition (100 year RP):
 - Wave: Hs = 12m, Tp = 17s
 - Wind: 31 m/s
 - Current: surface speed = 60 cm/s
- Vessel/Mooring General Particulars
 - Ice-breaker type vessel of about 220 000 Ton Displacement
 - 20 mooring anchor legs
 - Disconnectable buoy

SOFED

Design Requirement in Ice Condition

- Design Conditions
 - 100 year RP 1st year ice ridge in head-on conditions
 - 100 year RP 1st year level ice conditions coming from any direction, including ice drift reversal
- Design global ice and mooring loads
- For head-on interactions: calculated values
 - For non-zero heading interactions: model test values

Calculation

- Loads due to the consolidated layer are calculated using an elastic beam bending model.
 - Ice breaking on a downward slope
 - Applicable for 20 deg \leq bow slope \leq 50 deg (ice-breaker type)
- Loads due to ice ridge keel are calculated based on a semi-empirical method.
- Loads due to keel failure on the bow
 - Loads due to keel rubble friction along the sides of the vessel
- No analytical model for drift reversal scenarios.

Model Tests

- Ice Tank Facilities: Krylov Institute, St. Petersberg / HVSA, Hamburg
- Scale = 1:70 / 1:45
- Test campaign
 - Level ice, ice ridge, rubble field
 - Head-on, 30-degree attack angle, drift reversal
 - Moored, Moored and thruster assisted, free floating and fixed
 - With / without ice management
- Challenge:
 - Modeling of the ice properties
 - Modeling of the ridge geometry

Model Rubble Ice Field

Model Ice Ridge

Buoy Embedded by ice rubbles during drift reversal in 100 year RP ice ridge

Example Results

Model Test Results for Various Scenarios (Mooring Loads due to Ice)

- 100 yr RP Level Ice
 - − Approach from 30° : ≈ 20% of Max. Design Load
 - Drift reversal 170°: ≈ 45% of Max. Design Load
- 100 yr RP Ice Ridge
 - Head-on: ≈ 75% of Max. Design Load
 - Approach from 30°: ≈ 120% of Max. Design Load (not a design case)
 - Drift reversal 170°: ≈ 160% of Max. Design Load (not a design case)
- With Ice Management
 - 30% decrease in loads

sorec

Calculated Loads vs. Measured Loads

- Reasonable Comparison
 - Head-on ice ridge: calculated 86% vs. measured 75%
- Difficulty in matching the results well:
 - Approximation in ice properties (e.g. flexible strength)
 - Lack of information on "as built" ice ridge geometry. (Analytical model sensitive to the ice ridge keel depth and angle, based on "perfect" geometry)
- Designed for an upper bound value of 100% (for head-on)
- Ice loads >> Wave loads

SOFEC

Under Hull Transport

- Assess the risk of riser and potentially mooring damage by ice
- Evaluated based on underwater video recordings
- Conservative results: protected environment without current or waves. Ice management not considered.
- Ice under the buoy observed for 100 year RP level ice, ice ridge and rubble field during drift reversal
- Mooring lines embedded in rubble from all direction in case of 100 year RP ice ridge and rubble field
- The restoring force of the mooring system may results in varying velocity of the ice blocks thus complicates the ice transport mechanism.

Bohai Bay – Water Depth ~20m

Mooring and Vessel Model

SOFEC

Tower Yoke Mooring

Bow view Stern view

SOFec

FPSO Vessel

Ice Model Test

- Model Scale 1:42, HVSA, Hamburg
- Ice thickness in model scale = 6.2 ~ 7.6 mm
- High ice drift speed (1.3m/s)

Ice Environment Conditions

Ice Properties

Flexural Strength Ice Thickness

Model scale values			
Test	HSVA	Bohai Sea	
Series	measured	target	
	$\sigma_{f(meas)}$	$\sigma_{f(\text{target})}$	
[-]	kPa	kPa	
1015	33.6	14.3	
1025	37.0	14.3	
2010	31.0	14.3	
2020	37.9	14.3	
3010	29.7	14.9	
3020	36.5	14.9	
4010	26.6	14.9	
4020	28.0	14.9	
5010	41.7	14.3	
5020	44.4	14.3	
6010	22.5	14.9	
6020	25.7	14.9	
7010	29.0	14.3	
7020	29.1	14.3	
0010	21.6	14.0	
8010	31.6	14.9	
8020	30.0	14.9	

Model scale values				
Test	HSVA	Bohai Sea		
Series	Measured	target		
	Hice (meas)	Hice (target)		
[-]	Mm	mm		
1015	7.0	6.19		
1025	6.6	6.19		
 2010	5.9	6.19		
2020	5.9	6.19		
 3010	8.2	7.62		
3020	8.2	7.62		
4010	0.0	5.00		
4010	8.3	7.62		
4020	8.3	7.62		
 5010	6.2	6 10		
 5010	6.5	6.19		
 5020	0.0	0.19		
6010	82	7.62		
6020	8.2	7.62		
0020	0.2	7.02		
7010	6.5	6.19		
7020	6.5	6 19		
/020	0.5	0.17		
8010	9.3	7.62		
8020	9.4	7.62		

sorec

Model Set-up

- (1) 6-component scale mounted on the jacket-tower
- (2) Load cell at both sides of upper U-Joint
- (3) Tree strain gauge load cells at the FPSO
- (4) Reflectors at the tower
- (5) Reflectors at the yoke
- (6) Reflectors at the FPSO

30 Deg Heading Test

Initial heading: 30 deg sofec_fpso_4010_cam2.mpg

170 Deg Reversal Test

Initial heading:170 deg sofec_fpso_2010_cam2.mpg

Ice Failure

50720

Crushing failure

sofec

Cracks

SOFEC

Crack Propagation

sofec

(C)

(a)

General Observations – Model Testing

- Ice characteristics/properties vary by basin due to proprietary (and different) methods for producing model ice.
- Challenges in reproducing all ice characteristics (e.g. flexural strength and compressive strength) at model scale.
- Limited basin lengths/widths results in trade-offs between model scale, ice properties, and set-ups to be tested.
- Ice Sheets may take 1 3 days to create; test programs are long duration (several weeks) and test program needs to be focused. Data can end up being qualitative than quantitative if not properly designed and modeled.
- For people without much experience recommend hiring consultants with experience in ice load prediction and tank testing to support model test program and load estimation.
- Requirement for Ice Tank Model Testing Guidelines?

sofec

General Observations – Mooring Design

- Ice Management typically not taken into account for mooring design loads
- Higher uncertainty in estimating design ice loads
 - Limited ice data
 - Large variability in ice characteristics
 - Inaccuracy in load prediction by either design code, numerical models and ice tank tests
 - For dynamic systems may need hybrid model test/simulation to predict extreme loads and responses
 - => higher mooring safety factors or load factors?
- Pay attention to ice accumulation below vessel / around mooring. Can cause damage to instrumentation, sheathed wire, risers, etc.

