Empirical Moment-Based Estimation of Rayleigh-Stokes Distribution Parameters

Amir H. Izadparast

Research Engineer, SOFEC Inc.

&

Prof. John M. Niedzwecki

Zachry Department of Civil Engineering, Texas A&M University

ISOPE-2011 Maui Conference

June 19-24, 2011

Table of Content

- Background & Motivation
- Rayleigh-Stokes Model
- Moment Based Empirical Parameter Estimation Methods
- Parameter Estimation Performance
- Model Application and Evaluation
- Summary and Conclusions

- ➤ Background and Motivation
- Rayleigh-Stokes Model
- Moment Based Empirical Parameter Estimation Methods
- Parameter Estimation Performance
- Model Application and Evaluation
- Summary and Conclusions

Wave-Structure Interaction

Motivation

- It is necessary to include non-linear terms in the approximations,
- Robust models are required that can accurately estimate the probability distribution of non-linear random variables,
- It is important to address the physics correctly,
- It is vital to obtain reliable estimates of the extreme statistics,
- Data are available: from full scale measurements, model test data, and calibrated numerical models,

- Background and Motivation
- > Rayleigh-Stokes Model
- Moment Based Empirical Parameter Estimation Methods
- Parameter Estimation Performance
- Model Application and Evaluation
- Summary and Conclusions

Rayleigh-Stokes Model Development

PDF of crests in a linear narrow-banded random process (Rayleigh)

$$f_{\zeta}(x) = x \exp(-x^2/2) \qquad x > 0$$

$$\zeta_n = \gamma + \alpha \zeta + \beta \zeta^2 \qquad \alpha > 0$$

$$\beta > 0$$

$$\beta < 0$$

$$f_{\zeta_n}(x) = \frac{\chi - \alpha}{2\beta\chi} \exp\left(-\frac{(\chi - \alpha)^2}{8\beta^2}\right)$$

$$F_{\zeta_n}(x) = 1 - \exp\left(-\frac{(\chi - \alpha)^2}{8\beta^2}\right)$$

$$x_{\zeta_n}(u) = \gamma - 2\beta \ln(1 - u) + \alpha \left(-2\ln(1 - u)\right)^{1/2}$$

$$\chi = (\alpha^2 + 4\beta(x - \gamma))^{1/2}$$

$$f_{\zeta_n}(x) = \frac{1}{2\beta\chi} \left[(\chi - \alpha) \exp\left(-\frac{(\chi - \alpha)^2}{8\beta^2}\right) H_{\gamma}(x) + -(\chi + \alpha) \exp\left(-\frac{(\chi + \alpha)^2}{8\beta^2}\right) \right]$$

$$F_{\zeta_n}(x) = \left[1 - \exp\left(-\frac{(\chi - \alpha)^2}{8\beta^2}\right) \right] H_{\gamma}(x) + \exp\left(-\frac{(\chi + \alpha)^2}{8\beta^2}\right)$$

Rayleigh-Stokes Quantile Distribution

Extreme Analysis

Theory of ordered statistics:

 ζ_{max} maximum in N crests ζ_n

$$f_{\zeta_{\text{max}}}(x) = N f_{\zeta_n}(x) \left[F_{\zeta_n}(x) \right]^{N-1}$$

$$F_{\zeta_{\max}}(x) = \left[F_{\zeta_n}(x)\right]^N$$

Asymptotic form:

$$\lim_{N \to \infty} \left[F_{\zeta_n}(x) \right]^N = F_{\zeta_{\text{max}}} \left(\frac{x - a_N}{b_N} \right) \quad \text{For large number of waves}$$

Gumbel distribution

$$F_{\zeta_{\text{max}}}(x) = \exp\left(-\exp\left(-\frac{x - a_N}{b_N}\right)\right)$$

with parameters
$$a_{N} = x_{\zeta_{n}} \left(1 - \frac{1}{N} \right)$$

$$b_{N} = x_{\zeta_{n}} \left(1 - \frac{1}{Ne} \right) - a_{N}$$

$$a_{N} = \gamma + 2\beta \ln(N) + \alpha \left(2\ln(N) \right)^{1/2}$$

$$b_{N} = 2\beta + \alpha \left(2\ln(N) \right)^{-1/2}$$

$$a_N = x_{\zeta_n} \left(1 - \frac{1}{N} \right)$$

$$b_N = x_{\zeta_n} \left(1 - \frac{1}{Ne} \right) - a_N$$

$$a_N = \gamma + 2\beta \ln(N) + \alpha (2\ln(N))^{1/2}$$

$$b_N = 2\beta + \alpha (2 \ln(N))^{-1/2}$$

Quantile Distribution of Rayleigh-Stokes Maxima

- Background and Motivation
- Rayleigh-Stokes Model
- ➤ Moment Based Empirical Parameter Estimation Methods
- Parameter Estimation Performance
- Model Application and Evaluation
- Concluding Remarks

Empirical Parameter Estimation

Method of Moments

Equating the first three distribution moments with their corresponding sample moments.

Distribution Moments:

$$\mu_1(X) = \int_0^1 x(u) du \qquad n = 1$$

$$\mu_n(X) = \int_0^1 (x(u) - \mu_1)^n du \qquad n > 1$$

Sample Moments:

$$\hat{\mu}_1(X) = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\hat{\mu}_n(X) = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu}_1)^n$$

Method of L-moments

Equating the first three distribution L-moments with their corresponding sample L-moments.

Distribution L-Moments:

$$\lambda_n(X) = \int_0^1 x(u) P_{n-1}^*(u) du, \quad P_n^*(u) = \sum_{k=0}^r p_{n,k}^* u^k$$

$$= \sum_{k=0}^r (-1)^{n-k} (n+k)!$$

$$p_{n,k}^* = \frac{(-1)^{n-k} (n+k)!}{(k!)^2 (n-k)!}$$

Sample L-Moments:

$$l_{n+1}(X) = \sum_{k=0}^{n} p_{n,k}^* \hat{\mu}_{PW,2,k}(X)$$

$$\hat{\mu}_{PW,2,n}(X) = N^{-1} \binom{N-1}{n}^{-1} \sum_{j=n+1}^{N} \binom{j-1}{n} x_{j:N}$$

Empirical Parameter Estimation

Method of Moments

$$\mu_1(\zeta_n) = \gamma + 2\beta + \alpha(2)^{1/2} \Gamma(3/2),$$

$$\mu_{2}(\zeta_{n}) = 4\beta^{2} + \alpha \beta(2)^{3/2} \Gamma(3/2) + 2\alpha^{2} (1 - \pi/4),$$

$$\mu_{3}(\zeta_{n}) = 16\beta^{3} + 9(2)^{1/2} \alpha \beta^{2} \Gamma(3/2) + 12\alpha^{2}\beta(1 - \Gamma^{2}(3/2)) + \alpha^{3}(2)^{3/2} \left(2\Gamma^{3}(3/2) - \frac{3}{2}\Gamma(3/2)\right).$$

Method of L-moments

$$\lambda_1(\zeta_n) = \gamma + 2\beta + \alpha(2)^{1/2} \Gamma(3/2),$$

$$\lambda_2(\zeta_n) = \beta + \alpha (2^{1/2} - 1) \Gamma(3/2),$$

$$\lambda_3(\zeta_n) = \alpha \left(2^{1/2} - 3 + (8/3)^{1/2}\right) \Gamma(3/2) + \frac{\beta}{3}$$

- Background and Motivation
- Rayleigh-Stokes Model
- Moment Based Empirical Parameter Estimation Methods
- > Parameter Estimation Performance
- Model Application and Evaluation
- Summary and Conclusions

Empirical Parameter Estimation Uncertainty Analysis

Studied Parameters:

$$1.0 \le \alpha \le 1.6$$
 $N_s = 2,000$ $-\alpha/10 \le \beta \le \alpha/10$ $1,000$ 330 $\gamma = 0.0$ 100

Measure of Performance:

$$RMSE(\hat{\varphi}) = \left(E\left[\left(\varphi - \hat{\varphi}\right)^{2}\right]\right)^{1/2}$$

- Background and Motivation
- Rayleigh-Stokes Model
- Moment Based Empirical Parameter Estimation Methods
- Parameter Estimation Performance
- ➤ Model Application and Evaluation
- Concluding Remarks

Model Test Data

Draft	28.50 m	
Column Diameter	8.75 m	
Column Spacing	28.50 m	
Pontoon Height	6.25 m	
Pontoon Width	6.25 m	
Scale	1/40	
Water Depth	668 m	

Description	H _s (m)	T _p (sec)	$\gamma_{\rm s}$
100 yr West Africa	4.0	16.0	2.0

MoLM

$$E(\zeta_{max}) = 4.76 (m)$$

MoM

$$E(\zeta_{max}) = 4.72 (m)$$

MoLM

$$E(\zeta_{max}) = 4.72 (m)$$

MoM

$$E(\zeta_{max}) = 4.73 (m)$$

- Background and Motivation
- Rayleigh-Stokes Model
- Moment Based Empirical Parameter Estimation Methods
- Parameter Estimation Performance
- Model Application and Evaluation
- ➤ Summary and Conclusions

Concluding Remarks

- The three-parameter Rayleigh-Stokes model is studied as a semi-empirical probability distribution of weakly non-linear crests and troughs.
- The model parameters are estimated from application of method of moments (MoM) and method of L-moments (MoLM).
- The application of Rayleigh-Stokes model for extreme analysis and estimation of extreme statistics is discussed.
- It is shown that the tail distribution is highly sensitive to the variation of the model parameters specially to the variability of the non-linear term.
- It is observed that MoLM and MoM perform similarly well for large samples while MoLM is the better alternative in case of small samples and samples with contaminated observations.
- MoLM found to be more robust in the case of positive non-linear term while MoM performs better in the case of negative non-linear term.

Concluding Remarks

- The extreme statistics of empirical Rayleigh-Stokes model estimated from small samples N_s <330 should be used with care.
- The practical example studied here, once more, showed that Rayleigh-Stokes model is considerably successful in representing the probability distribution of non-linear wave crests.

Acknowledgments

The authors would like to gratefully acknowledge the financial support of: SOFEC Inc.

Texas Engineering Experiment Station

R.P. Gregory '32 Chair endowment

Extreme crests may not be that bad after all!

