sof**sofec**

Roll Motions of FPSOs

SOPEC

SNAME Texas Section December 14, 2010

SOFEC

'We thought we were gone' says cruise passenger

50720

SOFEC

Importance of Roll Motions

- Hard to predict accurately.
- Roll motions have an effect on:
 - Top sides foundations
 - Risers or their end fittings
 - Turret bearing loads
 - Efficiency of process equipment
 - Crew comfort/wellness
 - Helicopter operations
 - Loading/unloading of supply vessels
 - Shloshing loads in FLNG membrane tanks

SDFEC

Basics of Roll Motion

- Resonant motion amplitude dominated by amount of damping at the natural frequency.
- Roll natural period of typical FPSO between 10-15s -> right in the range where wave spectrum has significant energy.
- Excitation Factors:
 - Relative Wave Angle
 - Separation Tn & Tp
 - Wave Spreading
 - Spectral Peakedness
 - Water Depth
 - Other

- Damping Sources:
 - Skin friction
 - Wave making
 - Eddy generation
 - Moorings & Risers
 - Internal waves in tanks
 - Other

Effect of loading condition

- Wave Condition:
 - Hs = 6.7m
 - Tp = 11.4s
 - Direction = 270deg
- Loading Condition:
 - Ballast, Tn = 11.7s
 - Full, Tn= 14.1s

SOFEC

Effect of Loading Condition - cont'd

- Test Results:
 - Full, stdev = 1.5deg; mpm = 6.6deg
 - Ballast, stdev = 3.9deg; mpm = 13.3deg

Effect of Bilge Keel Width

- Wave Condition:
 - Hs = 6.7m
 - Tp = 11.4s
 - Direction = 270deg
- Loading Condition:
 - Ballast, Roll natural period = 11.7s
- Caveats:
 - Very shallow draft condition
 - Damping from lower riser balcony

SOFec

sofec

Effect of Bilge Keel Width - cont'd

Test Results:

 $-1.0m \times 185m$, stdev = 4.3deg; mpm = 14.5deg

- 1.5m x 205m, stdev = 3.9deg; mpm = 13.3deg

Effect of Bilge Keel Width - cont'd

SOFEC

SOFEC

Long Term Response Analysis

SOFEC

SO72C

Long Terms vs Short Term Response Analysis

Example Long Term Response Analysis

- Turret moored tanker in GOM
- Hurricane hindcast database
- FD Mooring Analysis using SPMsim
- Resulting 100-year MPM Roll Amplitude
- Response Based Design Criteria

SOFEC

SOFEC

Joint Distribution: Hs – Relative Wave Heading

significant wave height (m)

Joint Distribution: Roll – Relative Wave Heading

MPM roll amplitude w/o wave spreading

Joint Distribution: Roll – Relative Wave Heading

MPM roll amplitude w/ wave spreading

100-yr Cumulative Distribution of Roll

MPM Roll from 100yr Storm vs 100yr Roll MPM

100yr Design Environment

- Hs = 12.2m
- Tp = 14.2s
- Vw = 36.5m/s @ 30deg
- Vc = 1.75m/s @ 45deg

MPM from 100yr storm

= 5.8deg

MPM 100yr Roll = 9.9deg

100yr Roll Environment

- Hs = 8.9m
- Tp = 14.5s
- Relative Heading = 135deg

SOFEC

SOFEC

Local Conditions that affect Roll Motions

SOFEC

SOFEC

Seasonal swell direction Northwest Shelf, Australia

SOFec

Seasonal wind direction Northwest Shelf, Australia

SOFec

Relative Swell Heading, Northwest Shelf, July

sofec

Wave and Current Rose, July, Offshore Ghana

Example of CFD for Roll Motions

- 2D CFD using EOLE[™] by Principia
- Comparison of 6 configurations
- Forced oscillations at Tn = 14s with 5° and 10° amplitudes
- Quadratic damping extracted from moment time series
- Moment around center of roll integrated on 1m wide section: 2D
- Removal of linear damping using 3D diffraction analysis

SOFEC

SOFEC

Configurations Studied

Vortex Development induced by Appendages

Estimated Roll RAOs for the various cases

sorec

Effect of Mooring and Risers on Roll Motions

- Water Depth: 2140m
- VLCC, Ballast Draft = 8.8m
- Mooring Configuration:
 - Spread mooring, 24 mooring lines
 - Turret mooring, 9 mooring lines
- Riser configuration:
 - 24 catenary risers
 - Total FZ ~ 5500 metric tons
- Beam Sea Condition 1-yr RP:
 - Hs = 4.5m
 - Tp = 9.9s

SOFec

Effect of Risers on Roll RAO

Roll RAO - Effect of Mooring and Risers, 270deg

Effect of Riser Balcony Location

Roll RAO - Effect of Riser Porch Location

Effect of Riser Balcony Location

RAO of vertical motion at the riser hang-off point, amidships

Effect of Mooring Configuration

Roll RAO, Turret vs Spread Mooring

Second Order Roll Motions

Motions at Roll Natural Period driven by difference frequency moments

Second Order Roll Motions

- Example ullet
 - 170,000 DWT FPSO Purpose Built
 - No bilge keels _
 - Roll Period: Full = 25.2s; Ballast = 23.7s ____
- Test setup:
 - Horizontal mooring
 - Scale 1:60
 - 3-hr duration

Simulation setup:

- HOBEM 3D diffraction
- Second order roll moment spectrum

sorec

Separation between Roll period and wave period

Second order Roll Moment Spectrum

Second Order Roll Motions – Simulation vs Test

Full Draft Roll Motions (deg)						
		Mean	Max	Min	Stdev	
Simulation	WF	0.0	1.4	-1.4	0.4	BL
	DF	-0.7	10.2	-12.2	3.2	
	Total	-0.7	11.6	-13.6	3.2	
Test	Total	0.4	9.8	-11.4	2.4	

Ballast Draft Roll Motions (deg)								
		Mean	Max	Min	Stdev			
Simulation	WF	0.0	2.1	-2.1	0.6			
	DF	-0.5	10.3	-11.2	3.1			
	Total	-0.5	12.4	-13.3	3.1			
Test	Total	-0.3	11.0	-11.9	2.5			

Concluding Remarks

- Accurate Roll predictions still difficult
- Bilge keels are very effective in reducing roll
- For SPMs LTRA is necessary to find extreme roll
- Determine critical sea state and bilge keel before model test
- Bilge/ bilge keel configurations can be compared using CFD
- If roll period is long don't forget about second order roll

sofec

Thank you.

References

SOFEC

- FPSO roll damping prediction from CFD and 2D and 3D model tests investigations, ISOPE 2004 Toulon.
- On Second Order Roll Motions of Ships, OMAE2003-37022
- Extreme Responses of Turret Moored Tankers, OTC 12147
- FPSO Roll JIP, MARIN

SOFEC

Sorec