LINEARIZATION OF QUADRATIC DRAG TO ESTIMATE CALM BUOY PITCH MOTION IN FREQUENCY-DOMAIN AND EXPERIMENTAL VALIDATION

OMAE 2009 Honolulu, Hawaii May 31 - June 5, 2009

Amir Salem	SOF
Sam Ryu	SOF
Arun Duggal	SOF
Raju V. Datla	Stev

SOFEC SOFEC SOFEC Stevens Institute of Technology

Outline

• Background

- Current Study (Pitch Motion Linearization)
- Discussion of Results
- Summary

Catenary Anchor Leg Mooring (CALM) Buoy

Methods for Wave Frequency Motion Estimate

Model Test

SOFEC

• Time Domain (TD)

Frequency Domain (FD)

- Quadratic Drag Linearization
 - Iterative
 - Stochastic

Time Domain Model

- Morison type disc elements
- Nonlinear drag force proportiona relative velocity squared

Perspective

Model Test

- Model Particulars
- Model scale = 1:35.6
- Water depth = 106.8m
- Buoy dia = 17m
- Skirt dia = 21m
- Draft = 5.65m

Buoy Model (cont'd)

Validation with Model Test Results

(After Duggal and Ryu 2005)

SOFEC

Pitch motion response

Equation of Motion (6-DOF & 1-DOF)

Spring-Mass-Damper

 $M \{ x \} + C \{ x \} + K \{ x \} = \{ F \}$ $M = (M_i + M_a)$ $C = (C_r + C_v)$ $K = (K_h + K_m)$

Pitch Free Response

 $M \times C \times K x = 0$ x (0) = X_o, x(0) = V_o

Pitch Free Decay Comparison

Freq. dependent pitch motion elements

Damping Linearization: 1- Quadratic 2- Cubic $M \xrightarrow{K} C (x \xrightarrow{K} x = F)$ $C(x + C_1 + \frac{8}{3p}C_2 + w + \frac{3}{4}C_3 +$ (Chakrabarti, 1992) $X^{0} = 0, C_{v}^{*} = \frac{8}{3p} C_{v} |x^{n}|, C_{v} = \frac{1}{2} r_{w} C_{D} A$ F (W) $X^{n+1} = \frac{T(w)}{-w^2M - (C_r + C_v^*)iw + K}$ X^{n+1} - X^n \pounds e

Damping Linearization: 3- Stochastic

 $M \xrightarrow{X} C (x \xrightarrow{X} K x = F)$

$$C (x \otimes x \otimes x \otimes x \otimes x \otimes x) = \frac{1}{2} r_W C_D A \sqrt{\frac{8}{p} s_x \otimes x} \otimes x \otimes x \otimes x \otimes x \otimes x}$$

(Chakrabarti, 2002)

$$X (w) = \frac{F (w)}{-w^2 M - \bigotimes_{x}^{\infty} \sqrt{\frac{8}{p}} s_{x} \frac{\ddot{o}}{\phi} + K$$

Pitch Motion RAO Comparison

Phase Comparison

Summary

- Linearization quadratic drag/damping is accomplished by quadratic, cubic and stochastic linearizations.
- Quadratic and cubic linearization shows the deep valley around 6 to 8 seconds & good agreement for long periods.
- Stochastic linearization show a good agreement.

SOFEG

SOFEC

SOFEC

SOFEC

SGRES

