so**sofec**

Tandem Offloading from an FLNG in Harsh Environments

Caspar Heyl, Allen Liu & Arun Duggal SOFEC, Inc.

ISOPE 2009, Osaka 24 June 2009

Outline

- Why Tandem Offloading for FLNG systems?
- Design Requirements
- Development of the Mooring System
- Analysis of System
- Validation with Model Test Data
- Focus on Extreme Design Cases and Operations
- Summary

SOFEC

Offloading from an F(P)SO

Typical Offload Operation Criteria

- Tandem offloading using Nylon Hawser from FPSO to Tanker:
 - Maximum Connect Hs = 2.5m
 - Maximum Offload Hs = 3.5m
- Tandem Offloading using DP Shuttle Tankers
 - Maximum Connect Hs = 4.5m
 - Maximum Offload Hs = 5.5m
- Side-by-Side Offloading from FPSOs to Oil Tankers:
 - Maximum Connect Hs ~ 1.5 to 2m
 - Maximum Offload Hs ~ 2.0 to 2.5m

Design Requirements

- Offloading from Floating LNG Platforms
- High Safety and Reliability Requirements
- Use Field Proven Technology
- Harsh Operational Environmental Conditions:
 - Offload in Hs = 5.5m seas
 - Connect mooring and LNG transfer system in Hs = 4.5m
 - No additional support vessels
- Offload Frequency ~ 2 offloads / week

SOFEC

LNG Tandem Offloading System Developed

Initial Analysis/Validation of System

- Global System Responses and Loads:
 - In-house frequency domain tools
 - Ignore wave interaction between two vessels
 - No wind/current shielding between the two vessels
 - Obtain System Load and Response Estimates
- Model Tests for Validation:
- Complete FLNG Mooring Yoke LNGC System
 - Yoke Instrumented for Forces and Angular Displacements
 - Relative Motions between the Two Vessels

Tandem Mooring - Model Test Program

- FLNG System:
- LBP ~ 300m
 - Beam ~ 55m
 - LNG Capacity: 240 m^3

- LNGC System:
 - LBP ~ 270m
 - Beam ~ 44m
 - LNG Capacity: 140 m^3

Tandem Offloading Design Criteria Environmental Conditions

3973	Maximum Offloading Seastates 99.999%			Berthing	10
Cumulative Probability				99.40%	
	Wave Only	Crossed 1	Crossed 2	Crossed	
Water Depth	64	64	64	64	m
Wave			-10		
Wave Spectral Model	P-M	P-M	P-M	P-M	
Significant Wave Height	5.5	5.5	5.5	3.5	m
Peak Period	12	10.5	12	9.5	sec
Direction	180	180	180	180	deg
Wind					
Velocity		42.9	42.9	23.5	knots
Wind Spectral Model		API	API	API	2
Direction		225	225	225	deg
Current					
Velocity		1.45	1.45	0.58	knots
Direction		270	270	270	deg

Model Tests: Connected System, Hs = 5.5m

Model Tests: Hook-up, Hs = 3.5m

Comparison with Model Test Data

5

Parameter	Theory	Test	Unit
Relative Vessel Motions			
Surge, Min	-7.10	-8.78	meters
Surge, Max	3.21	2.60	meters
Sway, Min	-9.19	-6.96	meters
Sway, Max	10.53	10.07	meters
Heave, Sig	4.50	4.78	meters
XY, Max	11.27	10.41	meters
XYZ, Max	12.13	11.74	meters
Ball Joint Forces		10	
Fx- Longitudinal Force	371	467	m. tons
Fy - Transverse Force	-560	-403	m. tons
Fz - Vertical Force	-165	-175	m. tons
Fxy - Resultant Force	591	488	m. tons
Fxyz - Resultant Force	605	516	m. tons
Pendant Tension			
at Upper U-joint	1407	1291	m. ton
Pulling Tension	262.0	265.0	m. ton

Comparison: Model Test versus Analysis 1

Comparison: Model Test versus Analysis 2

sorec

Comparison: Model Test versus Analysis 3

Relative Z Raos Cr2, Tp=12s

Time Domain Analysis

Analysis of the LNGC hook-up to the FLNG

- Time domain analysis using OrcaFlex
- LF motions calculated from wind, wave and current
- WF motions calculated from RAOs
- LF motions fully coupled through yoke and pull-in line
- Duplex yoke modeled in full detail with u-joint friction
- Pull-in winch in constant speed mode (3m/min) with slip clutch at 275 MT
- Stern thrust of 80 MT on LNGC

SDFEC

Response in Hs 5.5m seas (Connected)

Hawser Winch– Similar to 250HP Markey Softline Escort Tugboat Used for LNG Carrier Service

- Scalable to 1000 1200 HP, 300 ton
- Existing & Proven control technology
- High thermal energy dissipation for shock load and rendering operation

Connection Analysis

Analysis Results

Pull-in Line Length between Yoke Tip and Connector

Clearance between Buoyancy Tank and LNGC Bow

Summary & Conclusions

- Robust Tandem Mooring System Developed for FLNG Offloading in Harsh Environments
- Can be used with existing LNG Transfer Systems
- Also suitable for use with Cryogenic Hoses (under qualification / not yet field proven)
- Global Responses Predicted Well by Frequency
 Domain Analysis
- Time Domain Model Used to Model Reconnection of System – also useful for developing site specific operational criteria.

