sosciences and the second seco

Mooring Systems for Harsh Environments

International Mooring Seminar 2009 25 March 2009

Caspar Heyl

Introduction

Harsh Environments for FPSOs

- Severe Winter Storms
- Hurricanes/Typhoons/Cyclones
- Ice: Pack Ice and Icebergs
- Benign Swell Conditions!

FPSOs for Harsh Environments

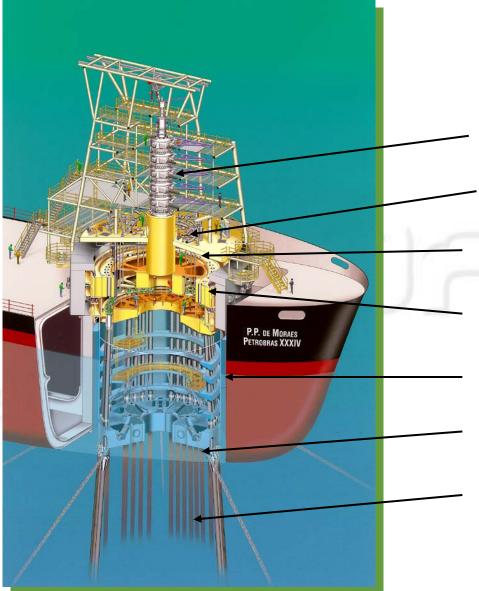
- Permanent Mooring and Riser Systems
- Disconnectable Mooring and Riser Systems

Experience in Harsh Environments

- North West Atlantic (Grand Banks)
- North Western Australia and South China Sea
- General Observations on Mooring Design for the Long-Term

Environment: Current FPSO Installations

- North Atlantic (West of Shetlands)
- North-West Atlantic (Eastern Canada) $H_s = 16$ meters
- Central to Northern North Sea
- South China Sea
- South East Asia
- Southern Ocean (New Zealand)
- South Atlantic (Brazil)
- Gulf of Mexico (Mexico)
- Gulf of Mexico (Deepwater, USA)
 - West Africa


 $H_s = 12$ to 16 meters $H_s = 13$ meters $H_s = 9$ meters $H_s = 11$ meters $H_s = 11$ meters $H_s = 9$ meters $H_s = 13$ meters $H_s = 4$ meters

 $H_{\rm s}$ = 18 meters

Water depths range from ≈ 50 to 2,500 meters

Typical Permanent Internal Turret System

Large Load CapacityCapacity Large Number of Risers

Swivel Stack (Product/Lift/Controls)

Manifolds + Pig Launching/Receiving

Anchor Leg + Riser Pull-In Equipment

Bearing (only upper in this case)

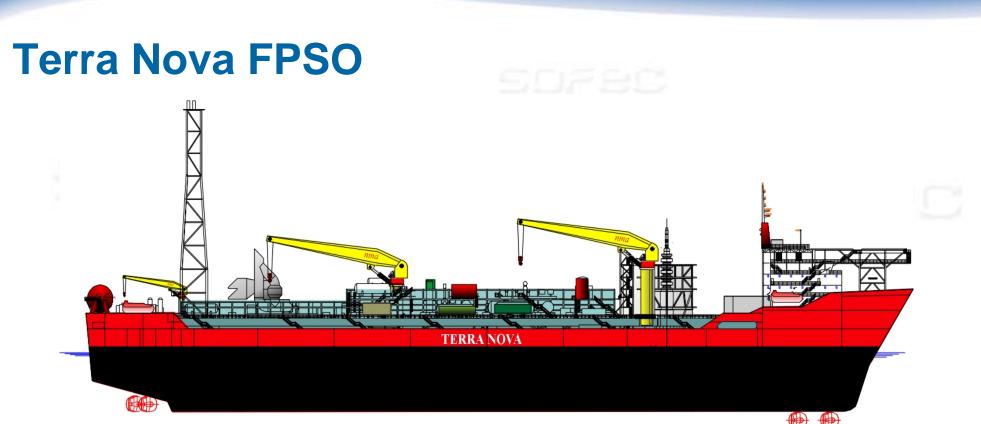
Turret Shaft / Riser Guide Tubes

Chain Table

Anchor Legs + Risers

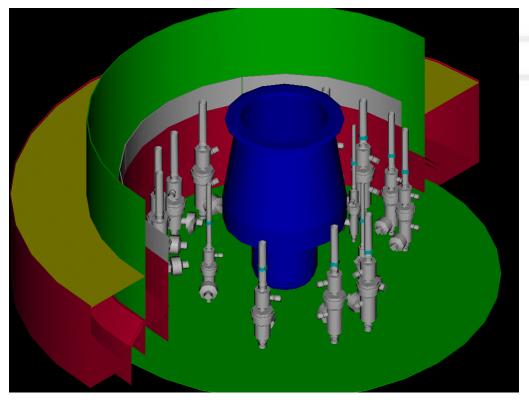
Typical Disconnectable Turret System

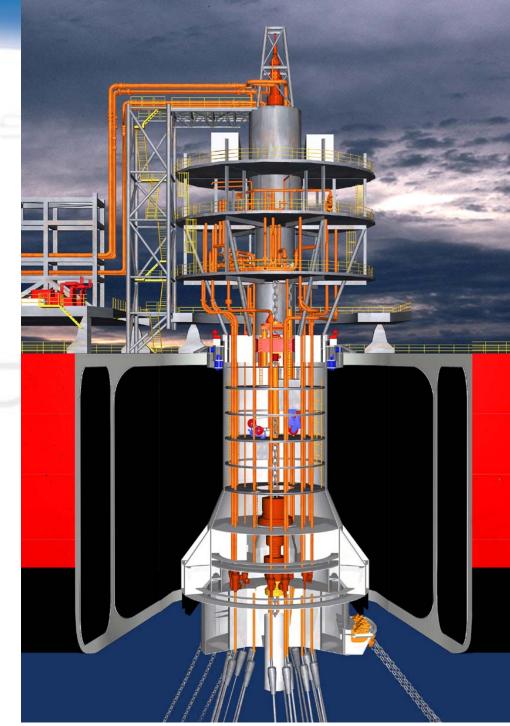
- Swivel Access
 Structure
- Swivel Stack
- Manifold Piping
- Riser Deck
- Main Bearing
- Turret Shaft -
- Risers & Umbilicals
- Anchor Legs


Severe Storms and Ice

Design Environment

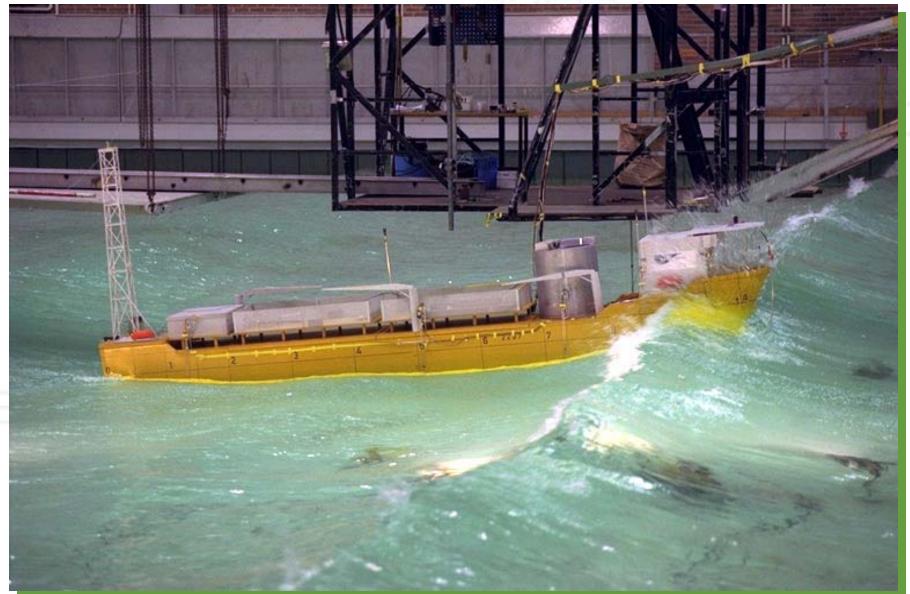
	1-Year	100-Year	e
Waves	Hs = 10.9 m Tp: 12.9 – 16.0 sec	Hs = 16.0 m Tp: 15.7 – 20.2 sec	
Wind	Vw = 28.8 m/s	Vw = 39.6 m/s	
Current	Vc = 1.0 m/s	Vc = 1.3 m/s	
Pack Ice	0 – 30%	> 50 – 70%	C
lcebergs	<100,000 MT	>100,000 MT	


• Vessel: ice-strengthened, 960,000 bbl storage


- L=292 m, B=45.5 m, D=28.2 m
 - 5 azimuthing thrusters @ 5 MW each
- Disconnectible turret system
- Thruster assisted 3X3 mooring system
- 19 risers & umbilicals

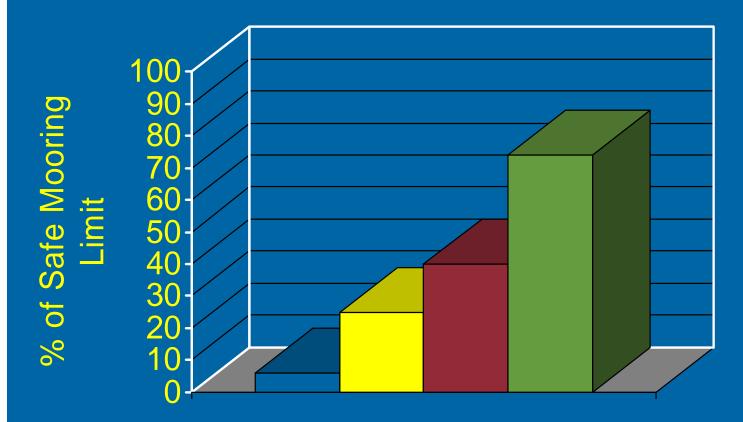
sorec

Terra Nova FPSO: Disconnectable Turret


SOFEC

sofec

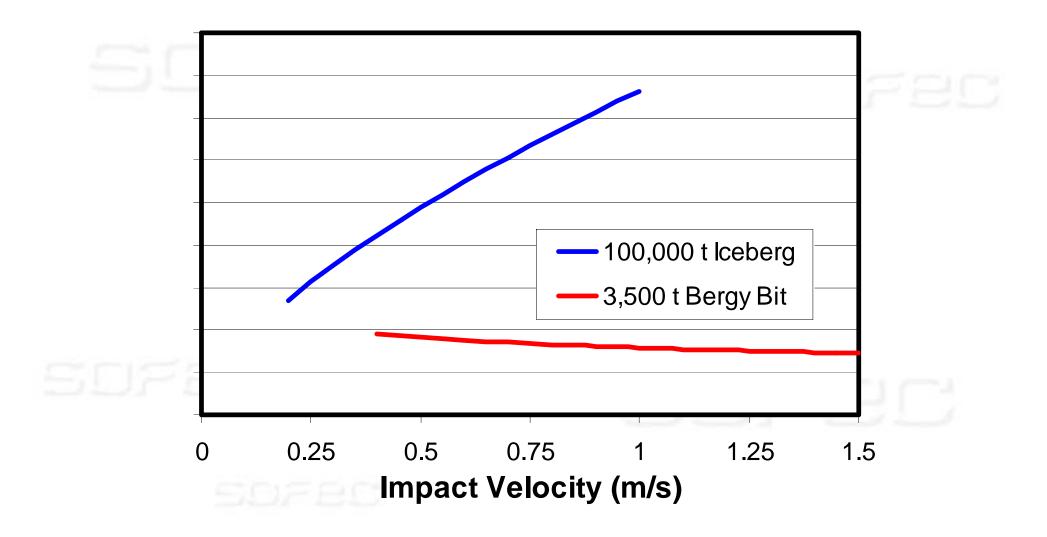
Performance in Survival Seas


Performance in Pack-Ice

Pack Ice Load on Moored FPSO

Floe Thickness = 1.0 meter

50% Coverage
85% Coverage
85% Rotation
100% Unbroken

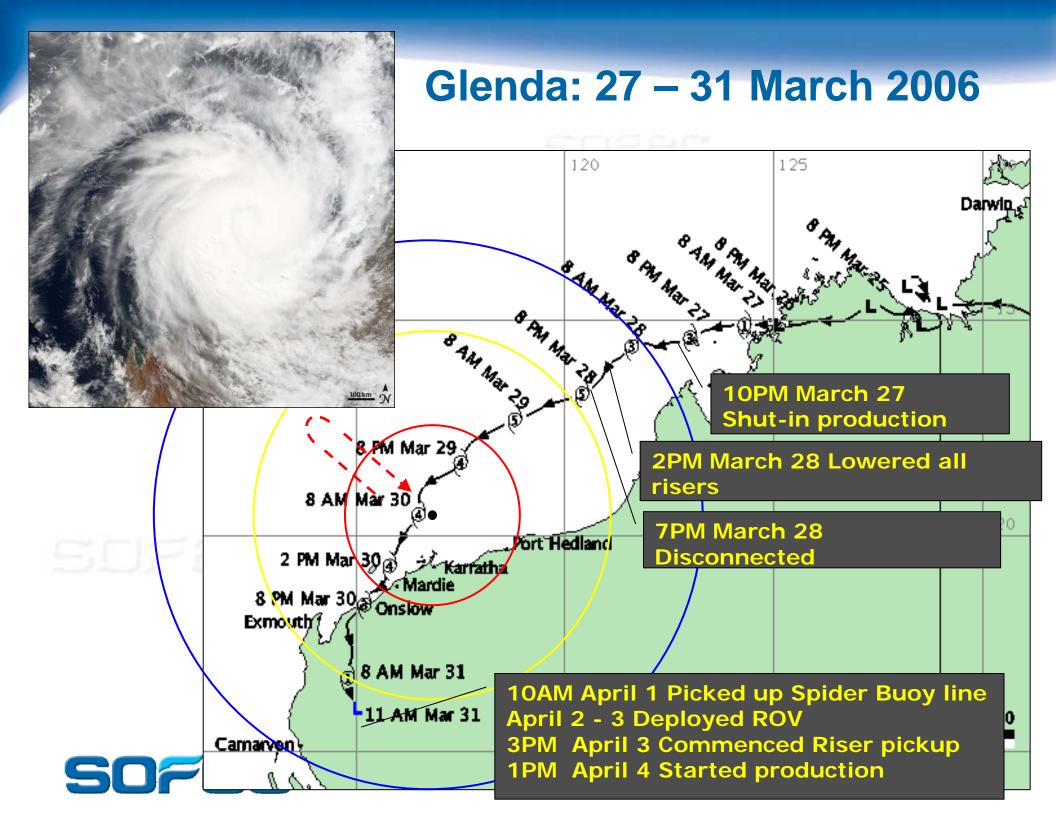


Impact of 100,000 MT Iceberg with FPSO

Iceberg & Bergy Bit Impact Loads

Disconnectable Turret-Moored FPSOs – Australia

- Santos Mutineer Exeter FPSO (Installed 2005)
 - 160 m water depth
 - 10 risers and umbilicals
- BHPB Stybarrow FPSO (Installed 2007)
 - 850 m water depth
 - 12 risers and umbilicals
- BHPB Pyrenees FPSO (to be installed 2009)
 - 200 m water depth
 - 15 risers and umbilicals


DTM for Cyclone Regions

- Robust design Excellent Performance Record
 - Fluid-transfer and load-transfer components designed to disconnect separately
- Mooring designed to remain connected for 100year winter storm
- Turret mooring designed to disconnect for cyclones / hurricanes
 - Design Disconnect duration ~ 6 hours
 - Reconnect w/o assistance in seas up to Hs of 3 meters
- Disconnectable spider buoy
 - Supports anchor legs, and risers and umbilicals

Cyclones over Mutineer/Exeter Field 2006-08

Name	Duration	Year	Category
• Clare	Jan 7 – 10,	2006	3
• Daryl	Jan 18 – 23,	2006	2
• Emma	Feb 27 – 28,	2006	1
 Floyd 	Mar 21 – 26,	2006	4
Glenda	Mar 27 – 31,	2006	5
Hubert	Apr 6 – 7,	2006	2
 Isabel 	Jan 2 – 4,	2007	1
George	Mar 6 – 10,	2007	4
• Jacob	Mar 9 – 11,	2007	3
• Kara	Mar 25 – 28,	2007	3
Melanie	Dec 26 – 1/2 ,	2008	2
 Nicholas 	Feb 10 – 19,	2008	4
Pancho	Mar 25 – 29,	2008	4
sorec			

Summary of Selected Disconnect / Reconnect Durations

	Duration		Total	
Cyclone	Disconnect	Reconnect	Production D/T	
	(hours)	(hours)	(days)	
Clare	24	32.5	4.6	
Daryl	36	50	6.3	
Emma	26*	14*	3.1*	
Floyd	*	*	0.6*	
Glenda	21	74	7.6	
Hubert	11	25	4.2	
George / Jacob	29	33	9.9	
Kara	32	34	5.5	
Melanie	14	39	4.9	
* Spider Buoy was not disc	onnected / reconnecte	d		

General Observations for Long-Term Design

- Are the standard mooring factors of safety adequate for harsh environments/long service life (+ future life extension)?
- Should two-legs damaged be considered in the design?
- Wear and corrosion allowances
- Performance of Thruster-Assisted Moorings
 - FPSO design to allow for regular maintenance and overhaul
 - Dependence on DP can impact Mooring when performance is not as designed

Example: Degradation of Mooring Components

- Permanent Mooring System in South China Sea
- Installed 1996
- Design Life 10 years
- Design Cyclone Seastate:
 - Hs = 12.8m
- Survived Super Typhoon Sally (1996):
 - Hs = 14.3m
- Mooring Failed Typhoon Chanchu (2006):

- Hs = 13.8m

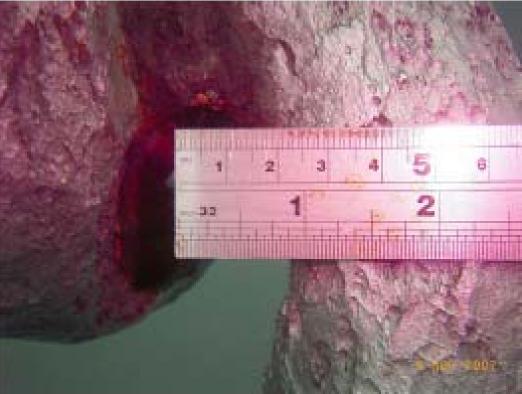
Spiral Strand Wire

GHS Time 20-May-06 14:46:13 E 362993.01 E 2305684.55 Raw2 46.24

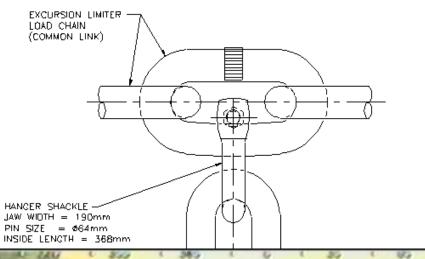
Damaged Risers

GBS Time 20-May-06 08:56:28 E 362950.11 # 2305345.04 RawZ 295.92

SOFEC


GBS Time 20-Hay-06 11:34:52 E 362097.47 E 2305533.53 RawZ 294.51

Corrosion



Hanger Shackle Details

2 P

10002

162

4

 69335615150007
 02:31:13

 JS 35x
 DCEGNEERING #41
 07-23-03

 2/4
 3/5
 040
 041
 047-23-03

1.31

Conclusions

SOFEC

• FPSOs have proven to be suitable for harsh environments

- Good performance record in a variety of environmental conditions
- Permanent and Disconnectable Mooring Systems
- Disconnectable Mooring Systems have an excellent record in Cyclone Environments
 - Disconnectability provides additional reliability for extreme seastates
- Mooring Systems are NOT fine wine they do not get better with age!
- Require inspection and fast response to deal with issues
- Selection of Mooring Design Criteria can have a huge impact on System Reliability over the life of the installation

