The Exact Solutions of Tower-Yoke Mooring Systems

ISOPE 2007

July 5, 2007 Yonghui (Allen) Liu

Introduction

- Extreme Shallow Water
- Catenary Mooring Systems Neither Feasible Nor Effective
- Solution: Tower Yoke Mooring System
- Easy and cost-effective Riser Systems
- Exact Solutions of Tower Yoke Mooring System
- Verified and Validated with Model Test Results

SOFEC

- a tower fixed at the seabed
- a mooring yoke assembly
- a heavy weight
- a turntable on the tower
- a two-axis joint on yoke
- two pendant linkages
- one double-axis joint on upper end (upper U-joint)
- one triple-axis joint on lower end (lower U-Joint)

sofec

LNG receiving platform in shallow water

Tower Yoke Mooring System General arrangement TRANSFER SYSTEM-س ----YOKE --MOORING SUPPORT STRUCTURE

General arrangement

Analysis Coordinates

Assumptions

- Yoke and linkages un-stretchable rigid bodies
- Small distance between yoke weathervaning axis, i.e. yow axis, and pitch/roll axis ignored
- Weights of pendant linkages negligible
- Rotation sequence: z-axis, γ , y-axis, eta , and x-axis, lpha

Positions of lower U-Joints in oxyz coordinate

$$\begin{cases} x^{s,p} = L\cos\beta\cos\gamma \mp \frac{b}{2}\cos\alpha\sin\gamma \\ y^{s,p} = L\cos\beta\sin\gamma \pm \frac{b}{2}\cos\alpha\cos\gamma \\ z^{s,p} = -L\cos\beta \pm \frac{b}{2}\sin\alpha \end{cases}$$
(1)

50725

Pendant angles by vessel motions at upper U-Joint, (x_v, y_v, z_v)

$$\begin{cases} \cos \gamma_x = (x_v - x)/l \\ \cos \gamma_y = (y_v - y)/l \\ \cos \gamma_z = (z_v - z)/l \end{cases}$$

Forces on yoke:

SOFEC

Moments at the yoke pivot point:

 $T^{p}(y^{p}\cos\gamma_{z}^{p}-z^{p}\cos\gamma_{y}^{p})+T^{s}(y^{s}\cos\gamma_{z}^{s}-z^{s}\cos\gamma_{y}^{s})-W\frac{(y^{p}+y^{s})}{2}=0$

 $T^{p}(z^{p}\cos\gamma_{x}^{p}-x^{p}\cos\gamma_{z}^{p})+T^{s}(z^{s}\cos\gamma_{x}^{s}-x^{s}\cos\gamma_{z}^{s})+W\frac{(x^{p}+x^{s})}{2}=0$

 $T^{p}(x^{p}\cos\gamma_{y}^{p}-y^{p}\cos\gamma_{x}^{p})+T^{s}(x^{s}\cos\gamma_{y}^{s}-y^{s}\cos\gamma_{x}^{s})=0$

SOFEC

Pendant linkages un-stretchable rigid bodies:

 $(x_{v}^{p} - x^{p})^{2} + (y_{v}^{p} - y^{p})^{2} + (z_{v}^{p} - z^{p})^{2} = l^{2}$ $(x_{v}^{s} - x^{s})^{2} + (y_{v}^{s} - y^{s})^{2} + (z_{v}^{s} - z^{s})^{2} = l^{2}$

SOFEC

The five unknowns: Yoke rotation angles: α, β, γ Pendant tensions T^p and T^s

can be solved exactly from the five equations above

SOFEC

SOFEC

SOFEC

Restoring forces and yaw moments on vessel:

$$\begin{cases} F_x^v = -T^p \cos \gamma_x^p - T^s \cos \gamma_x^s \\ F_y^v = -T^p \cos \gamma_y^p - T^s \cos \gamma_y^s \\ F_z^v = -T^p \cos \gamma_z^p - T^s \cos \gamma_z^s \\ M_z^v = \frac{b}{2} \left(-T^p \cos \gamma_x^p + T^s \cos \gamma_x^s \right) \end{cases}$$

Principle particulars of tower yoke mooring systems

Tower Yoke Mooring		1	2	
Water Depth		20	33	(m)
Yoke Length	L	35	40	(m)
Yoke Height	h	40	60.3	(m)
Yoke Breadth	b	28	28	(m)
Ballast Weight	W	1172	1460	(MT)
Pendant Length	1	15	18	(m)
Pendat Height	Η	45	65.7	(m)

Tower Yoke Mooring System Model Tests (at Shanghai Jiao Tong University Ocean Engineering Lab.)

System surge force-deflection characteristics

SOFec

Sway and starboard pendent tension characteristics

SOFEC

System surge force-deflection characeristics: FSO full loaded. (In water. Plotted 2001-12-6)

System surge force-deflection characteristics

System sway force-deflection characeristics: FSO full loaded. (In water. Plotted 2001-12-6)

CNOOC QHD32-6 FPSO

5

CNOOC QHD32-6 FPSO

CNOOC QHD32-6 FPSO

Conclusions

- Exact solutions has been derived for tower yoke mooring systems
- Theoretical solutions verified and validated through comparisons with model tests
- Excellent agreement has verified the theoretical methodologies presented
- Mathematical model successfully implemented in the design and analysis of tower yoke mooring systems
- Easily incorporated with time-domain and frequency-domain methods

20760

