Global Analysis of Shallow Water FPSOs

Arun Duggal, Allen Liu & Caspar Heyl

FMC SOFEC Floating Systems, Inc.

www.sofec.com

3 May 2004

Outline of Presentation

- Typical Shallow Water FPSO Systems
- Environmental Loading
- Example 1: External Turret Mooring System
 - Mooring Design and Global Analysis
 - Riser System Design
- Example 2: Tower Yoke Mooring System
- Summary and Conclusions

Challenges in Shallow Water Global Analysis

- Shallow Water! "Blockage" Effects
- Wave and Current Loading
- Hardening non-Linear Stiffness of Mooring Systems
- Low Level of Damping
- Design of Mooring-Riser Systems

External Turret Moored FPSO

Tower Yoke Moored FPSO

Shallow Water LNG Offloading Terminal

Shallow Water LNG Offloading Terminal

Metocean Issues for Shallow Water

- Seafloor Topography
- Definition of Metocean Conditions at Exact Location
 - Derivation of Metocean criteria from hindcast models
 - Joint distribution of wave and current intensity & direction
 - Tidal elevation and storm surge
- Current Loading on Floater
- Wave Loading on Floater
 - Shallow water wave characteristics
 - Mean and slowly-varying forces

Current Loads as a function of Water Depth

Attack Angle (degrees)

Wave Loads as a function of Water Depth

Example 1: External Turret Moored FPSO

Water Depth: 50 meters

• 100-yr Wave: Hs=8.2m, Tp=14s

Current: 1.5 m/s

• Wind: 30 m/s

• Risers: 11

External Turret Moored FPSO

Example: Riser Extreme Response

External Turret Mooring Stiffness

System Response as a function of Damping

Sensitivity to Hs-Tp Variation

Effect of Current Rotation

Time Domain Analysis: Sensitivity

Simulation	Maximum Tension (MT)	Maximum Offset (m)
1	560	19.5
2	450	17.2
3	434	18.1
4	576	18.6
5	512	17.4
6	506	17.1
7	580	18.1
8	490	17.0
9	579	20.8
Mean	521	18.2
Std. Dev.	56	1.3

Example 2: Tower Yoke Moored FPSO

Water Depth: 25 meters

• 100-yr Wave: Hs=5.0m, Tp=10s

• Current: 1.4 m/s

• Wind: 24 m/s

• Risers: 6 Risers

Tower Yoke Mooring Stiffness

System Response as a function of Damping

Summary and Conclusions

- Complex Interaction between
 - Environment
 - Seafloor
 - Vessel
 - Mooring
- Proper Specification of Metocean Criteria important for Shallow Water Systems
- Riser Design can Influence Mooring System Choice
- SPM Industry has an Excellent Track Record in Shallow Water

