DP FPSO: A Dynamically Positioned FPSO for Ultra Deep Waters

Joaquin Cortijo IZAR Arun Duggal FMC SOFEC Radboud van Dijk MARIN Sergio Matos DNV

ISOPE 2003

Turret Moored FPSOs for Deep Water

DP FPSOs for Ultra Deepwater

DP FPSO: Pros & Cons

Advantages:

- Utilizes Proven Offshore Technology
- Adapts to Ultra-Deepwater
 - No anchor leg system
 - No interference with equipment on seabed
 - Deepwater allows large offsets – easier control
 - Hybrid riser system suited for ultra deep water
- Candidate for an Early Production System
- Diconnectability allows for Easy Evacuation during Hurricanes

Issues:

- Stationkeeping Reliability
 - Power generation system
 - Thrusters
 - Control system
 - Operators
- Disconnectable Riser
 System
- Maintenance
- Life of Field Costs

DP FPSO: Integration of Proven Technology

Hypothetical Field Design Basis

Gulf of Mexico					
Water Depth	2,500 m (8,200 ft)				
Drill Centers	3				
Oil Production Rate	125,000 barrels/day				
Production Risers	6 x 12" PIP				
Water Injection	3 x 10"				
Gas Injection / Gas Lift	2 x 10"				
Gas Export	1 x 12"				
Umbilicals	4				

Design Basis (continued)

- Vessel 1,000,000 bbl storage
 - 20-year service life w/o dry-docking
- Offloading tankers around 500,000 bbl capacity
- Disconnectible Riser Turret
 - Controlled Disconnect: 12 hours
 - Emergency Disconnect: 15 30 minutes
- Environments representative of the Gulf of Mexico, West Africa & Brazil

Metocean Data for Design

ENVIRONMENTAL CONDITIONS	NORMAL OPERATION	EXTREME OPERATION			OFFLOADING	DISCONNECTION	RECONNECTION
Description	99% Exceedance GOM	Loop Current GOM	10-year hurricane GOM	Squall WOA	99% Exceedance GOM	10-year hurricane GOM	99% Exceedance GOM
Significant Wave Height	4,0 m	3,8 m	8,6 m	2,0 m	4,0 m	8,6 m	4,0 m
Peak Period	9,0 s	9,0 s	12,3 s	6,0 s	9,0 s	12,3 s	9,0 s
Wind Speed	15 m/s	15,0 m/s	29,5 m/s	30,0 m/s	15 m/s	29,5 m/s	15 m/s
Current Speed	0,35 m/s	2,13 m/s	1,0 m/s	0,35 m/s	0,35 m/s	1,0 m/s	0,35 m/s

DP FPSO Vessel

- Displacement: 190,000 MT
- Length:
- Breadth:
- Depth:
- Storage:

260 meters 46 meters 28 meters 1 million bbls

StationKeeping System

- DNV Notation "DYNPOS AUTRO" (IMO Class 3)
- 6 Azimuthing Thrusters (5 MW each)
 - Single failure results in 2 forward and 2 aft thrusters available
 - Overhauling of all thrusters possible in machinery space
- Redundant Power Generation and Switchboards
 - Dual Fuel Turbines and Dedicated Diesel Generators

Terra Nova Disconnectable Turret System

Swivel Stack Manifold Decks Upper Bearing Turret Shaft Connector-Tensioner Spider Buoy Anchor Legs Risers ĴÅ

DNV

IZAR

nergySystems

Turret – Buoy Interface

Single Leg Riser System

System Feasibility & Stationkeeping Performance Evaluation

- Numerical Simulations
 - MARIN program DPSIM for System Stationkeeping
 - FE program OrcaFlex for Riser Buoy System performance
- Model Tests
 - Conducted at MARIN's deepwater Offshore Basin
 - Complete Physical Model including DP-thruster system
- Workshops with Industry
 - Feedback on Offshore Operations
 - Concerns & Focus

Stationkeeping Time Domain simulations

- Initial Evaluation of DP-Thruster System
 Performance
 - Thruster lay-out and allocation
 - Evaluation of stationkeeping performance
 - Focus model test program
- Initial settings for DP control coefficients
- Comparison with model test results
- Final Design simulations after input data updated

DP FPSO Model Tests

- Full Physical Model
- Waves, Wind and Current (collinear and crossed)
- DP Control System including Kalman filter (RUNSIM)
- Six Azimuthing Thrusters
- Riser System and Buoy Modelled
 - Disconnect and Reconnect of Buoy-Riser System
- Tandem Offloading to tankers of opportunity
- Measurement of LF & WF vessel motions, Thruster loads and Riser loads

-FMC EnergySystems

DPSIM/RUNSIM Control Loop

FMC EnergySystems

Thruster Allocation Algorithm

- Minimum power (minimum emissions)
- Delivery of required forces and moment
- Based on LaGrange multipliers
- Forbidden zones applied to minimize thruster interaction effects and interaction with risers

Theoretical DP Capability Plot: 10-Year Winter Storm

DNV

IZAR

6 Thrusters
4 Thrusters
2 Thrusters

Hs=5.8m, Tp=10.6s Wind = 20 m/s Current = 0.6 m/s

FMC EnergySystems

DP FPSO Model (1:60)

DP FPSO in 10-Year Hurricane Condition

10-Year Winter Storm

DP Performance: 10-Year Winter Storm

Observations: DP Performance in Severe Seastates

- Heading window assessment for all tested sea states
- Excellent DP performance in operational conditions
 - For operational sea states (£ 99% exceedence):
 - Large heading window possible
 - Mean power consumption < 3 MW
- Ability to deal with maximum single failure (2 thrusters) for seastates up to 10-Year Winter Storm
- Acceptable DP performance in survival conditions
 - Intact System Offset less than 7% of water depth
 - 10-Year Hurricane + damaged condition results in drift-off

Offloading to shuttle tanker

Hs=4.0m, Tp=9.0s Wind = 15 m/s Current = 0.4 m/s

Offloading to Tanker

Observations: Offloading Model Test

- Conservative Case Tested: conventional shuttle tanker with back thrust only
- Offloading possible in sea states up to Hs = 4 m
- Only 4 thrusters needed
 - redundancy for maximum single failure
- Possible to select FPSO heading to minimize:
 - bow hawser loads
 - shuttle tanker motions

Riser Disconnection in 10-Yr hurricane

Hs=8.6m, Tp=12.3 Wind = 30 m/s Current = 1.0 m/s

Observations: Disconnectable Buoy Tests

- Predictable behaviour of buoy during disconnection
 - Orcaflex FE model predicts behavior very well
- No impact between Buoy and FPSO in 10-Year Hurricane Environment
- Minimal Overshoot of Final Buoy Position after
 Disconnection
- Disconnected Behavior of Buoy-Riser System as Predicted
- Reconnect possible in 4 m sea state (99% exc)
- No issues during reconnect procedure (high loads, interference)

Conclusion: Technical Feasibility Demonstrated

- Integration of Proven Technology
- Stationkeeping performance demonstrated for a variety of harsh operating conditions and system failure scenarios
- FPSO Vessel designed to allow easy Maintenance and Replacement (if necessary) of Thrusters
- Adequate Redundancy in Thrusters and Power Generation
- Detailed Risk & Reliability Study in Progress
 - Initial finding is that specific design elements of proposed system has reduced risk of failure compared to existing DP vessels

Current & Future Work

- Complete Detailed Design of DP FPSO Specific Components
 - Final Numerical Simulations
 - FPSO Vessel Design almost complete (current focus on power generation optimization)
 - Optimization of Disconnectable Riser-Turret System
- Develop Costs (+/-15%) for DP vs Passive Turret Moored FPSO
 - Capital Expenses
 - Operational Expenses
 - Life of Field Costs

