AIChE Conference on Natural Gas Utilization Spring 2003

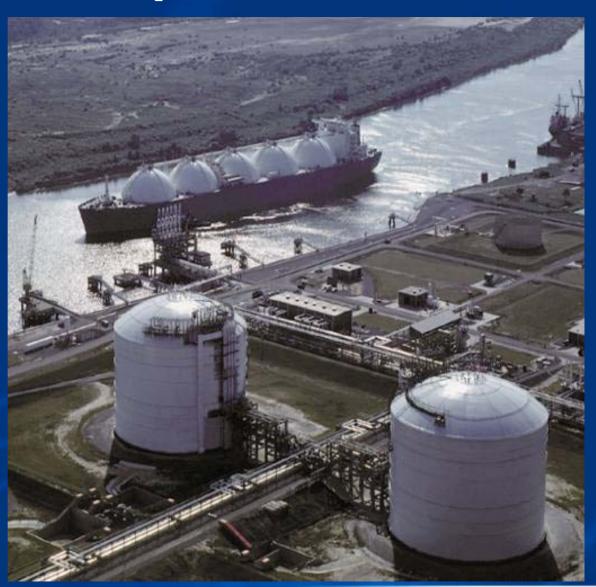
LNG Tandem Offloading System

Authors: Terry Boatman

Stephen Jones, Ron Mack

LNG Tandem Offloading System for Harsh Sea Conditions

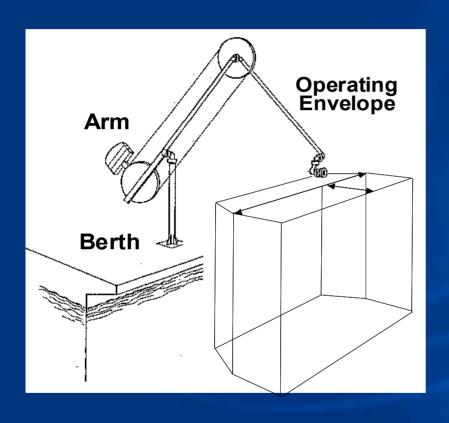
Combining two existing & proven FMC technologies:


- •LNG Loading Arm technology (FMC Loading Systems)
- •Mooring yoke & mooring connector technology (FMC SOFEC Floating Systems)

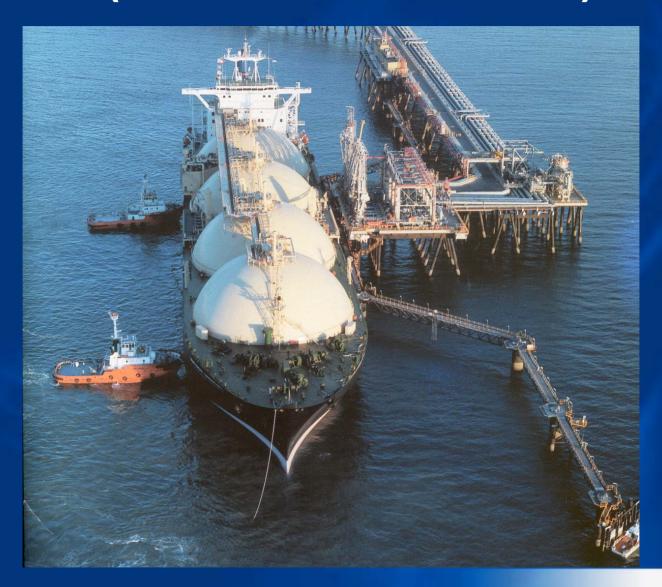
Conventional LNG Import Terminal

Lake Charles, LA

- Land based
- Regasification
- Storage
- Conventional Marine Loading Arms (MLA)



Typical Marine Loading Arm Installations



LNG Loading Arm Variables The Operating Envelope

- Location of terminal
- Wind, wave & currents
- Type of ship
- Mooring systems
- Water level, tidal variations

Onshore – Protected from Weather (Conventional Terminal)

Onshore – Protected from Weather (Conventional Terminal)

Typical Installation

- 3 Liquid / 1 Vapor Arm
- 10,000 M3/Hr Flow
- Typical Accessories
 Emergency Release System
 Manual Coupler
 Position Monitoring System
- Flange Connection Guidelines
 - Vertical Displacement +/- 0.1 M
 - Horizontal Displacement +/- 0.1 M
 - Velocity +/- 0.05 M/Sec
 - Acceleration +/- 0.025 M/Sec 2

Onshore - Exposed

Typical Installation

- 3 (2) Liquid / 1 Vapor Arm
- 10,000 M3/Hr Flow
- Typical Accessories

Emergency Release System

Hydraulic Coupler

Constant Motion Swivel Joints

Position Monitoring System

Flange Connection Guidelines

- Vertical Displacement +/- 0.5 M
- Horizontal Displacement +/- 0.5 M
- Velocity +/- 0.25 M/Sec
- Acceleration +/- 0.125 M/Sec 2

Offshore - Ship to Ship

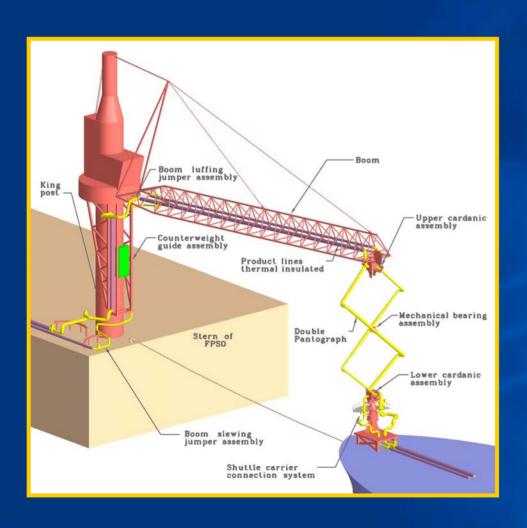
Typical Installation

- 3 (2) Liquid / 1 Vapor Arm
- 10,000 M3/Hr Flow
- Typical Accessories

Emergency Release System

Hydraulic Coupler

Constant Motion Swivel Joints


Position Monitoring System May Have Targeting System

General Flange Connection Guidelines

- Vertical movement +/- 2.5 M
- Horizontal movement +/- 1.7 M
- Velocity +/- 1.0 M/Sec
- Acceleration +/- 0.5 M/Sec 2

Offshore - Ship to Ship - Tandem Loading FMC Boom to Tanker (BTT)

Moderate sea conditions waves 2 to 4 m Hs
Large & stable LNG FPSO

- •JIP, 1997, BP, BHP, Shell, Texaco, Eni Agip, Gaz de France, Statoil, Woodside
- •JIP Model basin tests, tested relative motions
- Working model 1/5 scale now at FMC Sens France

Tandem Loading (Boom to Tanker)

Typical Installation

- 1 (24 in.) Liquid / 1 (16 in.) Vapor Arm
- 10,000 M3/Hr Flow
- Typical Accessories

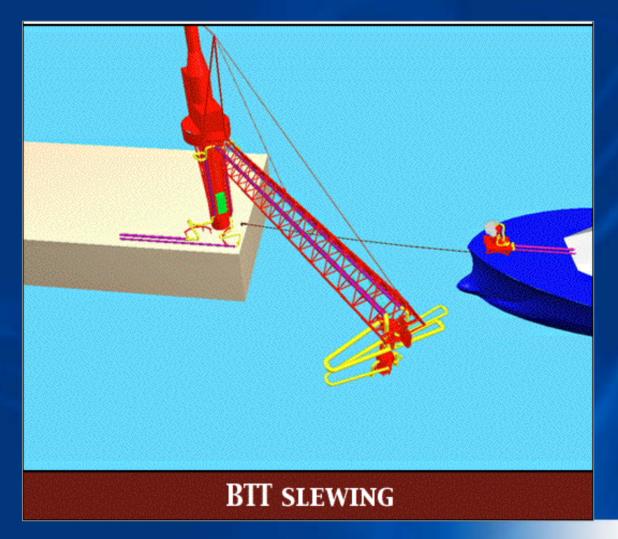
Emergency Release System

Hydraulic Coupler

Constant Motion Swivel Joints

Position Monitoring System

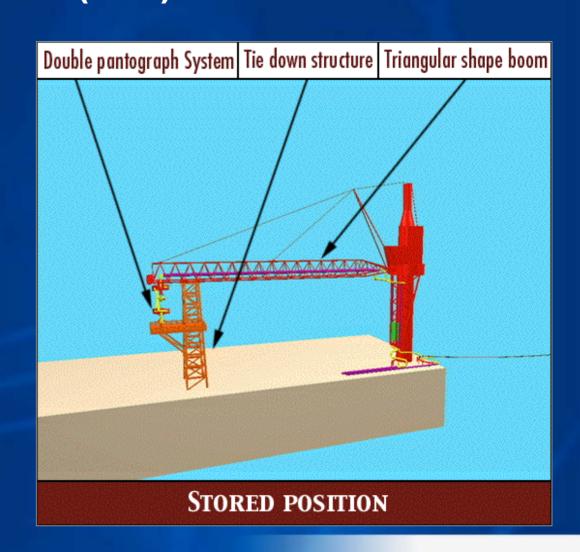
Targeting System


Connection Guidelines

- Heave +/- 5.0 M
- Velocity +/- 2.5 M/Sec
- Acceleration +/- 2.5 M/Sec²
- 23.0 M Diameter Operating Envelope

Ship to Ship - Tandem Loading

FMC Boom to Tanker (BTT)


Ship to Ship - Tandem Loading FMC Boom to Tanker (BTT)

Advantages

- Worse seas than allowed for side-by-side
- Relatively low cost for tandem loading
- Proven components

Disadvantage:

Dedicated LNG carriers with bow-mounted manifold

FMC SOFEC Tower Yoke Mooring System

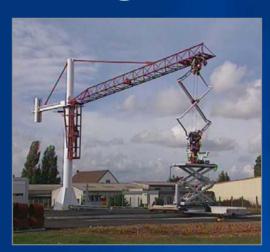
Constructed for CNOOC QHD32-6 FPSO, Bohai Bay

FMC SOFEC Tower Yoke Mooring System

CNOOC QHD32-6 FPSO

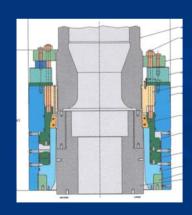
Petro-Canada Terra Nova FPSO (Eastern Canada)

- Awarded 1/98
- Installed 10/01
- 312 ft water depth
- New-build vessel
- 193,000 mt displacement
- 950,000 bbls storage


FMC 54" Hydraulic Connector

World's first disconnectable turret system for icebergs

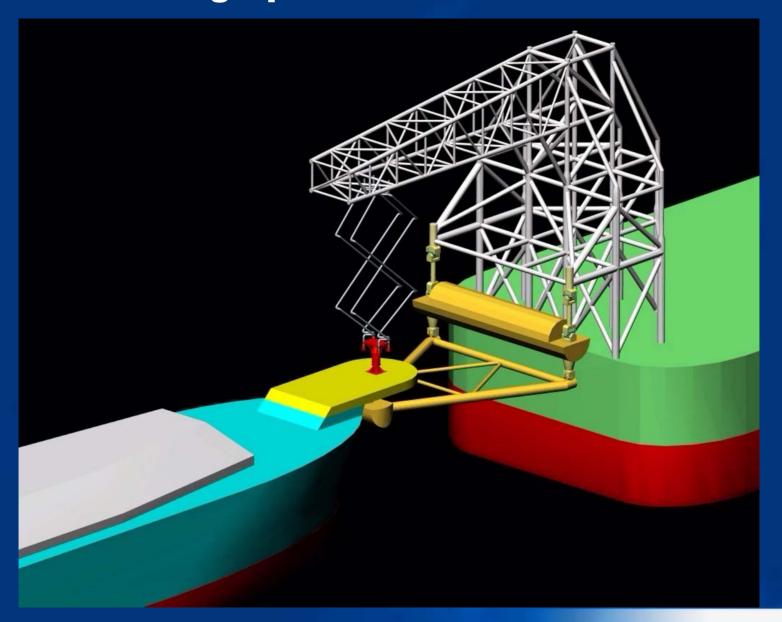
Combining Existing FMC Technologies



BTT

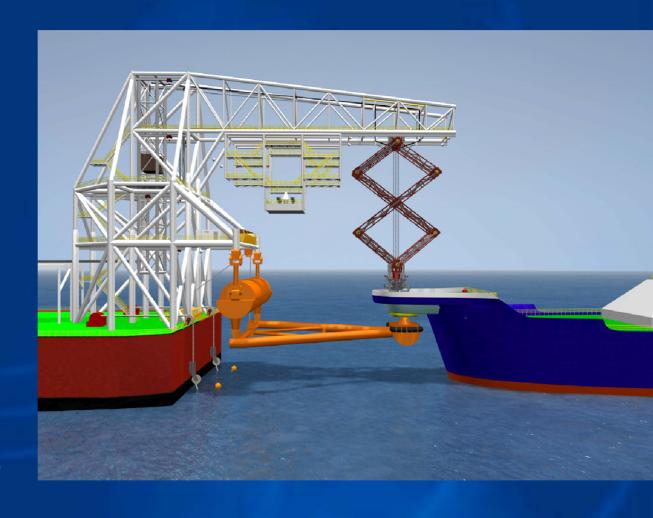
Chiksan Marine LNG Swivel Joint


FMC Connector


FMC SOFEC Yoke Mooring

Tandem LNG Offloading System

Yoke & Pantograph - Relative Vessel Motion


Tandem LNG Offloading System For Harsh Sea Conditions

Mooring Connection

3.5 m Hs wave

Operation & Offloading
 5.5 m Hs wave

- Connected
 - > 5.5 m Hs wave

Tandem Mooring - Model Testing Completed

LNG Carrier and LNG FPSO Dimensions

	LNG Carrier	LNG FPSO	
LNG Capacity	142,000	240,000	Cubic Meters
Displacement	114,465	168,220	Metric Tons
Length of vessel at waterline	270.8	300.0	Meters
Beam of vessel at waterline	45.3	54.5	Meters
Vessel draft	11.3	12.5	Meters

LNG Offloading System Design Criteria

- 15,000 m³/hr LNG @ -162°C
- 3 lines, 16" LNG (5000 m³/hr each)
- 1 line, 16" Vapor (28,000 m³/hr vapor)

Major Design Features of LNG System

- Provides simple LNG connection by vertically suspending the LNG loading arm (pantograph) from a stationary outboard boom
- Utilizes industry proven LNG transfer system components
- The LNG transfer system and mooring system are separate and independent systems
- Disconnection from LNG piping is totally independent from the mooring disconnection

Major Design Features of the Mooring System

- Duplex mooring yoke minimizes relative sway motions between the vessels to maximize LNG loading availability
- Utilizes Industry proven yoke and high load capacity FMC connector technology
- Maximum safety during mooring the LNG carrier
 - simple procedures
 - minimal assistance from auxiliary vessels

Sequence of Operations

Connection of LNG Carrier Vessel

LNG Carrier is Pulled to FPSO by Winches & Hawsers

Astern Thrust by LNG Carrier

Hawsers Pull In, Reverse Stern Thrust

Retrieval Yoke Messenger Line Onboard LNGC

Yoke Pull-In Line Connected

Yoke Retrieval Line Tightens Up

Yoke Clears Water

Yoke Cone Enters Connector Cone

Yoke Connected, Service Platform Moves

Pantograph Messenger Line Lowering

Pantograph Pulling Down

LNG Piping Connected, Offloading LNG

LNG Offloading Completed, Piping Pantograph Disconnects

Lowering Yoke

LNG Pantograph Parked, Wait for Next Carrier

LNG Carrier Mooring & Loading

FMC Energy Systems

Tandem LNG Offloading System

Conclusion