“Notice: The materials presented do not constitute an offer to sell the equipment or perform the services described herein”
Dynamic Risers for Deepwater Floating Production Systems

Typical Floating Production Platforms

- Spar
- TLP
- Semi
- Tanker

Hub Class Spar (courtesy Shell DDSI)
Small Water-Plane Area Hull

FPSO Tanker
Large Water-Plane Area Hull
Dynamic Risers for Deepwater Floating Production Systems

- FPSO Turret Systems: Elegant Solution, Highly Functional

External Turret

Shell Todd Maui B, New Zealand

Internal Turret

Amoco Liuhua, S. China Sea
Dynamic Risers for Deepwater Floating Production Systems

- FPSO Turret Systems: Elegant Solution, Highly Functional

 Provides Station Keeping
 - primary method for station keeping (thruster assist can be added)
 - restricts offsets to maintain riser system integrity

 Allows 360 degree weathervaning capability
 - reduces loads on mooring system
 - reduces motions for riser system and process (roll)
 - passive system can be unmanned during hurricanes

 Platform for mooring and riser systems pull-in equipment
 - Self contained pull-in systems require no additional support vessels after anchor leg/riser handoff to FPSO
Comparison of Floating Production Platform Motions

Comparison of Maximum Total Horizontal Offset

Offset as % of Water Depth (Depth=1,800m=6,000ft)

Horizontal Offset (%depth)

- FPSO: Inverted Catenary Mooring
- FPSO: Taut Polyester Mooring
- Semi: Catenary Risers
- TLP
- Spar: 18 SCR's, 16 Vertical Risers

Non-FPSO Motions courtesy Shell and Deepstar
Comparison of Floating Production Platform Motions

Comparison of Maximum Total *Heave, Pitch, Vert. Accel.*

- Maximum Total Heave
- Maximum Total Pitch
- Maximum Vertical Acceleration

Non-FPSO Motions courtesy of Shell and Deepstar

FPSO: 150kDWT 1MBBL
FPSO: 280kDWT 2MBBL
Semi: Catenary Risers
TLP: 16 Vertical, 18 SCR's
Spar: 16 Vertical, 18 SCR's

Non-FPSO Motions courtesy of Shell and Deepstar
Comparison of Floating Production Platform Motions

- Semi, Spar and TLP motions are “De-Tuned” from Waves (small water-plane area hull forms compared to FPSO)
 - Wave Periods: 4 to 20 seconds (95% energy)
 - Semi Natural Periods: 20 to 50 seconds (heave & pitch)
 - Spar Natural Periods: 30 to 150 seconds (heave & pitch)
 - Therefore dynamics are generally less severe than for FPSO

- Heave & Pitch Natural Periods for tanker: 8 to 12 seconds

- Tanker-Based FPSO will require a more “compliant” or “de-coupled” riser configuration compared to simple catenary or top tensioned vertical risers
Comparison of Floating Production Platform Motions

- FPSO Motion Reduction & Motion-Tolerant Riser Systems
 - Hull Form Optimization: ⇒ minimize wave motions
 - Utilize Oversized Hull: ⇒ reduce wave motions
 - Thruster-Assisted Mooring: ⇒ smaller wave/vessel heading
 (may require manned reduces motions & offsets,
 platform for Hurricane) ⇒ turret closer to midships reduces wave motions
 - Taut Polyester Mooring: ⇒ reduce vessel offsets
 - Compliant Riser Configurations: ⇒ e.g., Steel Lazy Wave
 - Decoupled Riser Configurations: ⇒ e.g., TLR, FTB, Hybrid Tower
Mooring and Riser System Design

Shallow water design
- Vessel offsets = 30% to 40% of water depth: riser design challenge
- Riser loads nearly insignificant for turret design
- Anchor leg / riser interference is key design issue

Deep water design
- Offsets = 10% to 20% of water depth: helps simplify riser design
- Riser loads significant for turret design and total restoring force
- Surge-drift damping contribution from anchor legs and risers is large
- Current loads on anchor legs and risers can be large
- VIV induced motions/loads on risers must be considered for fatigue

\[\therefore \text{Coupled analysis and simultaneous optimization of mooring & risers is critical for deepwater} \]
Deepwater Riser Systems
Flexible vs. Steel Pipe

General Comparison of Flexible and Steel Pipe:

FLEXIBLE PIPE (non-bonded composite)
- Smaller allowable bend radius
- More fatigue resistant
- Simple top connections
- Tolerates larger relative motions
- I.D. limited (practically) to 16 in.

STEEL PIPE
- Approximately half the cost of flexible pipe
- Larger available diameters
- More collapse resistant
- Top connection less tolerant of large motions: use flex-joint or short section of flexible riser
- Lower wet weight than flexible pipe
Deepwater Riser Systems Design Codes

Riser Design Codes:
- API RP 2RD (Steel Risers for FPS and TLPs)
- API RP 1111 (Steel Pipelines)
- DNV OS-F201 (Offshore Standard for Metallic Risers)
- API 17B and API 17J (Flexibles)

Design Codes Specify:
- Wall Thickness Criteria
- Global Dynamic Analysis Requirements
- Detailed Structural Analysis (Components/Connections)
- Materials (Welds, Coatings, Corrosion, Wear, Marine growth, etc.)
Steel Pipe Wall Thickness Design Criteria:

- Internal Pressure
- Extreme Axial Loads
- Collapse Due to External Pressure
- Buckling Due to Combined Bending and External Pressure
- Buckle Propagation
Global Analysis:

- Extreme/Survival Analysis
 Check for Extreme Loads & Stresses, MBR, Compression, Interference, Top angle variations

- Fatigue Analysis
 Wave Induced
 Slow Drift Induced (less important for risers connected to a turret moored FPSO)
 Vortex Induced Vibrations (VIV) Induced
 Transport/Installation induced

- Installation Analysis
Each Geometric Riser Configuration has Unique Performance, Cost and Applicability

Final configuration depends on:

- Water Depth & Severity of Environment
- Vessel Offset
- Turret Location/Motions
- Impact on Turret Design (Loading)
- Number of Risers, Plan Layout
- Soils and Seabed Topography
- Flow Assurance Requirements (insulation, pipe-in-pipe, etc.)
Deepwater Riser Systems Configurations

Free Hanging Catenary Riser

Advantages:
- Cost effective solution
- Standard technology/installation

Weaknesses:
- High loads on turret
- Large fatigue at top and TDP
- Not usually feasible on turret except in mild environment
Objective: De-couple motion at TDP from the FPSO motions
Deepwater Riser Systems
De-Coupled Hybrid Systems

De-couple motions using self-standing hybrid risers or buoy

Multibore Hybrid Tower
Single Leg Hybrid
TLR

Connection to the FPSO via flexibles
Deepwater Offloading Systems: Steel Suspended-Wave Flowlines

Used to offload an FPS to a CALM or FPSO

Direct Connect

De-coupled Solution
Qualitative Comparison of Deepwater Riser Systems

<table>
<thead>
<tr>
<th>Category</th>
<th>Configuration Example</th>
<th>Offset Sensitivity</th>
<th>Turret/Buoy Impact</th>
<th>Fatigue Resistance</th>
<th>CAPEX</th>
<th>Installability</th>
<th>Main Design Concerns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Connect</td>
<td>Free Hanging SCR</td>
<td>Medium</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Easy</td>
<td>Fatigue, Survival, Top Load</td>
</tr>
<tr>
<td>Compliant</td>
<td>Lazy Wave</td>
<td>Low</td>
<td>High</td>
<td>Medium</td>
<td>Medium</td>
<td>Moderate</td>
<td>Fatigue, Top Load</td>
</tr>
<tr>
<td>Hybrid</td>
<td>Tension Leg Riser</td>
<td>High</td>
<td>Low</td>
<td>High</td>
<td>Variable *</td>
<td>Complex</td>
<td>Installation</td>
</tr>
<tr>
<td>Suspended Offloading</td>
<td>Surface Buoy</td>
<td>Medium</td>
<td>High</td>
<td>Low</td>
<td>Medium</td>
<td>Moderate</td>
<td>Transport, Installation, Fatigue</td>
</tr>
<tr>
<td>Flowlines</td>
<td>FTB</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>Medium/High</td>
<td>Moderate</td>
<td>Transport, Installation</td>
</tr>
</tbody>
</table>

* Variable cost means lower (higher) cost per riser as number of risers increases (decreases)
Dynamic Risers for Deepwater Floating Production Systems

TLR
Riser System

Steel Lines De-Coupled from FPSO Motions
Deepwater Riser Systems
TLR or Hybrid configurations

Steel Lines
De-Coupled from FPSO Motions

TDP isolated

Drastically Reduces Turret Loads
TLR Riser System:

- FPSO motions de-coupled using a submerged steel buoy supporting SCRs and flexible jumpers to the turret
- Can accommodate a large number of risers
- De-coupling effective ⇒ buoy motions are small
- SCR’s not affected by the 100-year hurricane or fatigue environments
- Proven technology, with standard fabrication/installation procedures
- Recent DeepStar study concluded that TLR system is feasible in 3,000m depth and less costly than Steel Lazy Wave or Hybrid Riser Towers:

COST COMPARISON:

<table>
<thead>
<tr>
<th></th>
<th>*TLR</th>
<th>Lazy Wave</th>
<th>Hybrid Tower</th>
</tr>
</thead>
<tbody>
<tr>
<td>(based on large, multi-riser field development)</td>
<td>100%</td>
<td>120%</td>
<td>145%</td>
</tr>
</tbody>
</table>

* TLR cost benefits may be reduced for fewer number of risers.
Deepwater Riser Systems
TLR System

TLR
Riser
System

Steel Lines
De-Coupled
from
FPSO
Motions
Deepwater Riser Systems
TLR System

Steel Lines
De-Coupled from FPSO Motions
Deepwater Riser Systems: Steel Suspended-Wave Flowlines

Flowline Termination Buoy (FTB) Riser System

Steel Lines De-Coupled from FPSO

FTB is more robust & fatigue resistant compared to “direct-connect” riser systems
Deepwater Riser Systems: Steel Suspended-Wave Flowlines

SPM to FTB Riser System

Steel Lines De-Coupled from FPSO

SPM can be CALM or FPSO
Deepwater Riser Systems: Steel Suspended-Wave Flowlines

SPM to FTB Riser System

Steel Lines De-Coupled from FPSO

Fluid Swivels Above Water
Deepwater Riser Systems: Steel Suspended-Wave Flowlines

SPM to FTB Riser System

Steel Lines De-Coupled from FPSO

Product Swivels Above Water
Deepwater Riser Systems: Suspended-Wave Flowlines SPM to FTB
FPDSO → FPSO with Drilling and Workover Capability

Specialized turret allows simultaneous drilling, production & storage.

Non-conventional vessel, conventional components.
Deepwater Exploration and Production: Tomorrow’s Technology

- FPDSO
 - Top tensioned drilling risers
 - Tower hybrid production risers
 - Drag Chain product transfer system
 - Turret located near midship
 - Thruster-assist heading control
FPDSO

- Drilling radius = 100 meters
- Product riser radius = 200 meters
- Grouped mooring system (3x3)
Deepwater Exploration and Production: Tomorrow’s Technology

- FPDSO

Drag Chain product transfer system allows 270 degree vessel rotation (no fluid swivels required)
Deepwater Exploration and Production: Tomorrow’s Technology

- **FPDSO**

 - Compact drag chain system allows deployment of BOP stack and subsea templates without disassembly of drag chain system

 Net result is balance between production and drilling equipment requirements.

"Notice: The materials presented do not constitute an offer to sell the equipment or perform the services described herein. An offer to sell the subject matter of this report can only be submitted after (1) specific details of the system are described; (2) pricing of the specific system and installation methods has been accomplished; (3) patent clearance for the subject matter has been obtained; and (4) authorization to submit a bid has been obtained by an FMC/SOFEC officer."