International Conference on Deepwater Exploration and Production

"Notice: The materials presented do not constitute an offer to sell the equipment or perform the services described herein"

FMC SOFEC Floating Systems

- Typical Floating Production Platforms
 - Spar
 - TLP
 - Semi
 - Tanker

FPSO Tanker Large Water-Plane Area Hull

Hub Class Spar (courtesy Shell DDSI) Small Water-Plane Area Hull

FPSO Turret Systems: Elegant Solution, Highly Functional

External Turret

Internal Turret

- FPSO Turret Systems: Elegant Solution, Highly Functional
 - **Provides Station Keeping**
 - primary method for station keeping (thruster assist can be added)
 - restricts offsets to maintain riser system integrity
 - Allows 360 degree weathervaning capability
 - reduces loads on mooring system
 - reduces motions for riser system and process (roll)
 - passive system can be unmanned during hurricanes

Platform for mooring and riser systems pull-in equipment

 Self contained pull-in systems require no additional support vessels after anchor leg/riser handoff to FPSO
FMC EnergySystems

FMC SOFEC Floating Systems

Comparison of Maximum Total Horizontal Offset

Non-FPSO Motions courtesy Shell and Deepstar

Comparison of Maximum Total Heave, Pitch, Vert. Accel.

FMC EnergySystems

FMC SOFEC Floating Systems

Non-FPSO Motions courtesy of Shell and Deepstar

- Semi, Spar and TLP motions are "De-Tuned" from Waves (small water-plane area hull forms compared to FPSO)
 - Wave Periods: 4 to 20 seconds (95% energy)
 - Semi Natural Periods: 20 to 50 seconds (heave & pitch)
 - Spar Natural Periods: 30 to 150 seconds (heave & pitch)
 - Therefore dynamics are generally less severe than for FPSO
- Heave & Pitch Natural Periods for tanker: 8 to 12 seconds
- Tanker-Based FPSO will require a more "compliant" or "de-coupled" riser configuration compared to simple catenary or top tensioned vertical risers

FPSO Motion Reduction & Motion-Tolerant Riser Systems

- Hull Form Optimization:
- Utilize Oversized Hull:
- Thruster-Assisted Mooring: (may require manned platform for Hurricane)

- \Rightarrow minimize wave motions
- \Rightarrow reduce wave motions
- ⇒ smaller wave/vessel heading reduces motions & offsets,
- ⇒ turret closer to midships reduces wave motions

- Taut Polyester Mooring:

- \Rightarrow reduce vessel offsets
- Compliant Riser Configurations: \Rightarrow e.g., Steel Lazy Wave
- Decoupled Riser Configurations: \Rightarrow e.g., TLR, FTB, Hybrid Tower

Mooring and Riser System Design

Shallow water design

- \Rightarrow Vessel offsets = 30% to 40% of water depth: riser design challenge
- \Rightarrow Riser loads nearly insignificant for turret design
- \Rightarrow Anchor leg / riser interference is key design issue

Deep water design

- \Rightarrow Offsets = 10% to 20% of water depth: helps simplify riser design
- \Rightarrow Riser loads significant for turret design and total restoring force
- \Rightarrow Surge-drift damping contribution from anchor legs and risers is large
- \Rightarrow Current loads on anchor legs and risers can be large
- \Rightarrow VIV induced motions/loads on risers must be considered for fatigue
- :. Coupled analysis and simultaneous optimization of mooring & risers is critical for deepwater

Deepwater Riser Systems Flexible vs. Steel Pipe

General Comparison of Flexible and Steel Pipe:

FLEXIBLE PIPE (non-bonded composite)

- Smaller allowable bend radius
- More fatigue resistant
- Simple top connections
- Tolerates larger relative motions
- I.D. limited (practically) to 16 in.

STEEL PIPE

- Approximately half the cost of flexible pipe
- Larger available diameters
- More collapse resistant
- Top connection less tolerant of large motions: use flex-joint or short section of flexible riser
- Lower wet weight than flexible pipe

Composite Flexible Pipe Structure

Helical Strakes for VIV reduction

Steel Pipe Cross Section

Deepwater Riser Systems Design Codes

- Riser Design Codes :
 - API RP 2RD (Steel Risers for FPS and TLPs)
 - API RP 1111 (Steel Pipelines)
 - DNV OS-F201 (Offshore Standard for Metallic Risers)
 - API 17B and API 17J (Flexibles)
- Design Codes Specify :
 - Wall Thickness Criteria
 - Global Dynamic Analysis Requirements
 - Detailed Structural Analysis (Components/Connections)
 - Materials (Welds, Coatings, Corrosion, Wear, Marine growth, etc.)

Deepwater Riser Systems Design Codes

- Steel Pipe Wall Thickness Design Criteria :
 - Internal Pressure
 - Extreme Axial Loads
 - Collapse Due to External Pressure
 - Buckling Due to Combined Bending and External Pressure
 - Buckle Propagation

Deepwater Riser Systems Design Issues

- Global Analysis :
 - Extreme/Survival Analysis

Check for Extreme Loads & Stresses, MBR, Compression, Interference,

Top angle variations

- Fatigue Analysis
 - Wave Induced

Slow Drift Induced (less important for risers connected to a turret moored FPSO)

Vortex Induced Vibrations (VIV) Induced

Transport/Installation induced

Installation Analysis

Riser Design Considerations Configuration Vs. Applicability

- Each Geometric Riser Configuration has Unique Performance, Cost and Applicability
- Final configuration depends on :
 - Water Depth & Severity of Environment
 - Vessel Offset
 - Turret Location/Motions
 - Impact on Turret Design (Loading)
 - Number of Risers, Plan Layout
 - Soils and Seabed Topography
 - Flow Assurance Requirements (insulation, pipe-in-pipe, etc.)

Deepwater Riser Systems Configurations

Free Hanging Catenary Riser

Advantages :

- Cost effective solution
- Standard technology/installation

Weaknesses:

- High loads on turret
- Large fatigue at top and TDP
- Not usually feasible on turret except in mild environment

Deepwater Riser Systems Compliant Systems

Objective: De-couple motion at TDP from the FPSO motions

Lazy Wave Steep Wave CVAR Steep-S Lazy-S

Deepwater Riser Systems De-Coupled Hybrid Systems

De-couple motions using self-standing hybrid risers or buoy

FMC SOFEC Floating Systems

Deepwater Offloading Systems: Steel Suspended-Wave Flowlines

Used to offload an FPS to a CALM or FPSO

Riser Design Considerations Configuration Vs. Applicability

Qualitative Comparison of Deepwater Riser Systems

Category	Configuration Example	Offset Sensitivity	Turret/Buoy Impact	Fatigue Resistance	CAPEX	Installability	Main Design Concerns
Direct Connect	Free Hanging SCR	Medium	High	Low	Low	Easy	Fatigue,Survival,Top Load
Compliant	Lazy Wave	Low	High	Medium	Medium	Moderate	Fatigue,Top Load
Hybrid	Tension Leg Riser	High	Low	High	Variable *	Complex	Installation
Suspended Offloading Flowlines	Surface Buoy	Medium	High	Low	Medium	Moderate	Transport,Installation,Fatigue
	FTB	Low	Low	High	Medium/High	Moderate	Transport,Installation

* Variable cost means lower (higher) cost per riser as number of risers increases (decreases)

TLR Riser System

Steel Lines De-Coupled from FPSO Motions

Deepwater Riser Systems TLR or Hybrid configurations

Steel Lines De-Coupled from FPSO Motions

TDP isolated

Drastically Reduces Turret Loads

Deepwater Riser Systems TLR System

- TLR Riser System:
 - FPSO motions de-coupled using a submerged steel buoy supporting SCRs and flexible jumpers to the turret
 - Can accommodate a large number of risers
 - > De-coupling effective \Rightarrow buoy motions are small
 - SCR's not affected by the 100-year hurricane or fatigue environments
 - Proven technology, with standard fabrication/installation procedures
 - Recent DeepStar study concluded that TLR system is feasible in 3,000m depth and less costly than Steel Lazy Wave or Hybrid Riser Towers:

COST COMPARISON:	*TLR	100%			
(based on large, multi-	Lazy Wave	120%			
riser field development)	Hybrid Tower	145%			
* TLR cost benefits may be reduced for fewer number of risers.					

Deepwater Riser Systems TLR System

TLR Riser System

Steel Lines De-Coupled from FPSO Motions

Deepwater Riser Systems TLR System

SPM to FTB Riser System

Steel Lines De-Coupled from FPSO

SPM can be CALM or FPSO

SPM to FTB Riser System

Steel Lines De-Coupled from FPSO

Fluid Swivels Above Water

SPM to FTB Riser System

Steel Lines De-Coupled from FPSO

Product Swivels Above Water

Deepwater Riser Systems: Suspended-Wave Flowlines SPM to FTB

FPDSO → FPSO with Drilling and Workover Capability

_Specialized turret allows simultaneous drilling, production & storage. Non-conventional vessel, conventional components.

FP<u>D</u>SO

- \rightarrow Drilling radius = 100 meters
- Product riser radius = 200 meters
- → Grouped mooring system (3x3)

FP<u>D</u>SO

→ Drag Chain product transfer system allows 270 degree vessel rotation (no fluid swivels required)

TURRET AND DRAG CHAIN PLAN VIEW AT ELEVATION +32250

FMC EnergySystems

FP<u>D</u>SO

 Compact drag chain system allows deployment of BOP stack and subsea templates without disassembly of drag chain system

Net result is balance between production and drilling equipment requirements.

"Notice: The materials presented do not constitute an offer to sell the equipment or perform the services described herein. An offer to sell the subject matter of this report can only be submitted after (1) specific details of the system are described; (2) pricing of the specific system and installation methods has been accomplished; (3) patent clearance for the subject matter has been obtained; and (4) authorization to submit a bid has been obtained by an FMC/SOFEC officer."

FMC EnergySystems