

# Arun Duggal FMC SOFEC Floating Systems

October 3, 2001



# Outline

#### Background

- Offloading Systems Worldwide
  - Offloading systems in shallow water
  - Evolution to deep water
- Deep Water Offloading Systems
  - Characteristics
  - Issues
  - Solutions
- Conclusion



# **Shallow Water Offloading Systems**

- SALM Buoys
- CALM Buoys
  - Mature technology (in operation worldwide for 20+ years)
  - Standard/Conventional interface with vessels of opportunity
  - Operating guidelines well established
- Other Offloading Systems
  - UKOLS
  - SAL, STL, etc.



# **SALM Buoy Offloading System**



Single Anchor Leg Mooring Bearing and Swivel Submerged

#### **Vessels of Opportunity**

# Gulf of Mexico: LOOP Since 1978





# **CALM Buoy Offloading System**

Catenary Anchor Leg Mooring

Most Popular Shallow Water Offloading System

Vessels of Opportunity

Bearing and Swivels above Water Line

Versatile





# **Tandem versus SPM Offloading**

- Availability (Environment Dependent)
  - SPM (turret-moored FPSO, offloading buoy): 97 99%
  - Tandem from spread-moored FPSO: 85 95%
- Cost
  - FPSO + Offloading Buoy: Higher CAPEX, Lower OPEX
  - FPSO + Tandem Offloading: Lower C
- Lower CAPEX, Higher OPEX

- Safety/Risk of Collision
  - Location of offloading buoy ~ 2,000 meters from FPSO minimizes risk of collision



# Evolution of Deep Water Offloading Systems

#### Current Application:

- West Africa & Brazil
- Mild to moderate environment
- Spread-Moored (non-weathervaning FPSO's)
- Long Field Life (20 30 years)
- High Rates of Production (> 100,000 bopd)
- Frequent Offloading to Vessels of Opportunity

Current Solution: Extend Well-Established Shallow Water Systems to Deep Water



### **Shallow Water CALM Buoy Offloading System**





# **Deep Water CALM Buoy Offloading System**





# **Simulation of CALM/Flowline Motions**





# **Buoy RAOs: Methodology Verification**

#### Surge RAO (4-Leg Mooring System)





# **Buoy RAOs: Methodology Verification**

Heave RAO (4-Leg Mooring System)





# **Buoy RAOs: Methodology Verification**

Pitch RAO (4-Leg Mooring System)





# **Sensitivity to Drag Coefficient**





# **Influence of Swell Bin Width**



Effect of Peak Period fatigue damage for LOWER BOOR, Swell waves, Hs = 1.75m



# **Sensitivity to Wave Direction**



Length along Flowline (m)



# **Influence of Heave Reduction**



Effect of 50% reduction in Heave RAO fatigue damage for LOWER BOOR Hs = 1.125m, Tp = 5.8s



# **Influence of Pitch Reduction**



Effect of 50% reduction in Pitch RAO fatigue damage for LOWER BOOR Hs = 1.125m, Tp = 5.8s



# **Influence of Surge Reduction**



Effect of 50% reduction in Surge RAO fatigue damage for LOWER BOOR Hs = 1.125m, Tp = 5.8s



# **Issues Related to Deep Water CALM Buoys**

- Flowline Reliability for Life of Field:
  - Buoy motions result in high cycle, low amplitude fatigue damage to flowlines
  - Flowline dynamics sensitive to environment & system damping
  - Flowlines designed to maximize fatigue resistance, not optimal offloading (head loss, pump pressure and flowrate)
- Hawser Loads Increase as Buoy Displacement Increases
  - Requires reduced offloading seastates due to limitation on bow stopper load
- Repair/Replacement of CALM Buoy?
  - Maintenance/Replacement of CALM buoy due to accidental or other damage may compromise the flowline system



FTB Supports Flowlines 75m Below Water Surface

Flowlines De-coupled from Surface Offloading Buoy

Fatigue Resistant Solution





Standard Offloading Interface for Mariners

All Critical Components (Bearings, Swivels) Above Water Surface

Allows for Easy Maintenance/Repair of Surface Buoy







Flowlines can be Steel Pipe of Flexibles





# **Simulation of FTB/Flowline Motions**





# **Fatigue Life Comparison**



FMC SOFEC Floating Systems

# Summary: FTB Offloading System

- De-couples Flowline Support and Offloading Functions
- Provides Standard Offloading Interface for Vessels of Opportunity
- Flowline Size and Configuration can be Optimized
  - Larger diameter, reduced wall thickness
  - Reduces required pumping pressure/increases flowrate
- Fatigue Life Estimate (West Africa): ~ 1,000 years
- Allows Repair/Replacement of CALM w/o Compromising Flowlines
- Increased Reliability over Life of Field



# **Offloading in the Gulf of Mexico**



