

Global Analysis of the Terra Nova Turret Mooring System

Arun S. Duggal (FMC SOFEC) Caspar N. Heyl (FMC SOFEC) George P. Vance (Terra Nova Alliance) 1 May 2000

Overview

- Design basis as it pertains to station keeping
- Design environmental criteria
- The FPSO system
- Global analysis: requirements and methodology
- The model testing program
- Sample results
- Summary

Station Keeping Design Basis

- FPSO located on the Grand Banks one of the most severe design environments in the world
- FPSO to stay on station during the 100-year storm
- FPSO to disconnect from mooring and risers to avoid icebergs and pack-ice
 - controlled disconnect in 4 hours
 - emergency disconnect in 15 minutes
 - re-connect to mooring & riser system without assistance
- 19 risers and umbilicals
- 25 year design life

The Grand Banks

Design Environment

Water Depth = 95 m

	1-Year	100-Year	
Waves	Hs = 10.9 m Tp: 12.9 – 16.0 sec	Hs = 16.0 m Tp: 15.7 – 20.2 sec	
Wind	Vw = 28.8 m/s	Vw = 39.6 m/s	
Current	Vc = 1.0 m/s	Vc = 1.3 m/s	
Pack Ice	0 – 30%	> 50 – 70%	
lcebergs	<100,000 MT	>100,000 MT	

Terra Nova FPSO

- Vessel: ice-strengthened, 960,000 bbl storage
 - L=292 m, B=45.5 m, D=28.2 m
 - 5 azimuthing thrusters @ 5 MW each
- Disconnectible turret system
- Thruster assisted 3X3 mooring system
- 19 risers & umbilicals

Terra Nova FPSO System

Terra Nova Turret

Swivel Stack

Manifold Decks

Upper Bearing

Turret Shaft

Connector-Tensioner

Spider Buoy

Anchor Legs

Risers

Spider Buoy

Global Analysis Requirements

Survival conditions

- FPSO global analysis & loads: 1-year and 100-year storm
- Spider buoy motions (disconnected): 1-year storm
- **Operational conditions**
 - fatigue analysis
 - FPSO system response during offloading

Spider buoy behavior during disconnect & reconnect

- transient buoy drop motions
- pull-in dynamics and loads
- Installation analysis

Global Analysis Methodology

Frequency domain analysis

- second-order forces and moments
- wave frequency vessel motions
- parametric study of FPSO system response
- FPSO global analysis
- Time domain analysis
 - detailed mooring analysis and turret loads
 - spider buoy response during disconnect & reconnect
 - thruster-assisted mooring and DP simulations
- Model testing for verification

Model Test Program

Integrated with global analysis effort:
input data for analysis
independent verification of global analysis

- Wind tunnel tests
- Survival environment tests
- Resistance and propulsion tests
- Pack ice and iceberg impact tests
- Buoy disconnect & reconnect tests
- Installation tests

Set-Up for Survival Testing

100-Year Storm

Terra Nova Vessel on DP

Survival Test Results (100-year)

3-Hour Maximum	Full Load		Ballast Load	
1999 1999 1999 18 C	Model Test	Prediction	Model Test	Prediction
Vessel Horizontal Offset	-20.6	-20.8	-20.9	-19.7
Vessel Pitch	7.3	7.1	7.5	7.2
	A 1992	0,0312	er se si s	1. 6 12
Anchor Leg Tension	640	688	696	743
Turret Horizontal Load	1,804	1,884	1,978	2,053
Turret Vertical Load	-1,764	-1,806	-2,212	-2,100

FEA of Turret-Vessel System

Pack Ice Tests

Pack Ice Load on Moored FPSO

Floe Thickness = 1.0 meter

50% Coverage
85% Coverage
85% Rotation
100% Unbroken

Spider Buoy Disconnect & Reconnect Analysis

Spider buoy disconnect

- Analysis of disconnect in up to a 1-year storm
- Buoy motions with & without risers
- Spider buoy retrieval
 - Buoy motions and loads during retrieval
 - Buoy-turret interface loads
- Installation analysis

Spider Buoy Disconnect

Simulating Buoy Disconnect

Spider Buoy Installation

Summary

 Optimized FPSO system design requires integrated analysis and engineering of vessel, turret mooring, and riser systems

Combination of analytical and numerical analysis with a properly designed model test program optimizes the global analysis effort

The FPSO system is a safe, cost effective means of producing fields on the Grand Banks and other regions with harsh environmental conditions