

Terra Nova FPSO: Integration of Model Tests and Global Analysis

Arun S. Duggal Caspar N. Heyl Peter F. Poranski

1 June 2000

Why Model Test?

- Input data for global analysis: wind & current coefficients
- Concept development and evaluation
- Provide an independent verification of the system global analysis:
 - vessel motions & offsets, line tensions, turret-vessel loads, etc.
 - DP- thruster system performance
 - installation engineering
- Study & analyze phenomena that are difficult to model analytically or numerically
 - green water & slamming
 - pack ice and iceberg loads
 - multi-body dynamics: offloading to shuttle tankers

Green Water & Slamming

Green Water: Model Tests

Green Water: Numerical Simulations

Tandem Offloading: Fishtailing

Station Keeping Design Basis

- FPSO located on the Grand Banks one of the most severe design environments in the world
- FPSO to stay on station during the 100-year storm
- FPSO to disconnect from mooring and risers to avoid icebergs and pack-ice
 - controlled disconnect in 4 hours
 - emergency disconnect in 15 minutes
 - re-connect to mooring & riser system without assistance
- 19 risers and umbilicals
- 25 year design life

The Grand Banks

Design Environment

	1-Year	100-Year
Waves	Hs = 10.9 m Tp: 12.9 – 16.0 sec	Hs = 16.0 m Tp: 15.7 – 20.2 sec
Wind	Vw = 28.8 m/s	Vw = 39.6 m/s
Current	Vc = 1.0 m/s	Vc = 1.3 m/s
Pack Ice	0 – 30%	> 50 – 70%
lcebergs	<100,000 MT	>100,000 MT

Terra Nova FPSO

- Vessel: ice-strengthened, 960,000 bbl storage
 - L=292 m, B=45.5 m, D=28.2 m
 - 5 azimuthing thrusters @ 5 MW each
- Disconnectible turret system
- Thruster assisted 3X3 mooring system
 - 19 risers & umbilicals

Terra Nova FPSO System

Spider Buoy

General Arrangement: Mooring System

Thruster-Assist Terminology

Global Analysis Requirements

- Survival conditions
 - FPSO global analysis & loads: 1-year and 100-year storm
 - Spider buoy motions (disconnected): 1-year storm
- Operational conditions
 - fatigue analysis
 - FPSO system response during offloading
- Spider buoy behavior during disconnect & reconnect
 - transient buoy drop motions
 - pull-in dynamics and loads
- Installation analysis

Global Analysis Methodology

- Frequency domain analysis
 - second-order forces and moments
 - wave frequency vessel motions
 - parametric study of FPSO system response
 - FPSO global analysis
- Time domain analysis
 - detailed mooring analysis and turret loads
 - spider buoy response during disconnect & reconnect
 - thruster-assisted mooring and DP simulations
- Model testing

Model Test Program

Integrated with global analysis effort:

- input data for analysis
- independent verification of global analysis
- Wind tunnel tests (1997)
- Survival environment tests (1997, 1998)
- Resistance and propulsion tests (1997)
- Pack ice and iceberg impact tests (1997, 1998)
- Buoy disconnect & reconnect tests (1998)
- Installation tests (1998, 1999)

Wind Tunnel Tests

- Wind
- Current
- Helideck
 Airflow
- Vessel Exhaust

Sample Wind Tunnel Test Results

Set-Up for Survival Testing

Survival Model Testing

Survival Test Results (100-year)

3-Hour Maximum	Full Load		Ballast Load	
	Model Test	Prediction	Model Test	Prediction
Vessel Horizontal Offset	-20.6	-20.8	-20.9	-19.7
Vessel Pitch	7.3	7.1	7.5	7.2
Anchor Leg Tension	640	688	696	743
Turret Horizontal Load	1,804	1,884	1,978	2,053
Turret Vertical Load	-1,764	-1,806	-2,212	-2,100

Vessel RAOs

Detailed Numerical Simulations

FEA of Turret-Vessel System

Pack Ice Tests

Pack Ice Load on Moored FPSO

Floe Thickness = 1.0 meter

50% Coverage
85% Coverage
85% Rotation
100% Unbroken

Iceberg & Bergy Bit Impact Loads

Iceberg Impact

Spider Buoy Disconnect & Reconnect Analysis

- Spider buoy disconnect
 - Analysis of disconnect in up to a 1-year storm
 - Buoy motions with & without risers
- Spider buoy retrieval
 - Buoy motions and loads during retrieval
 - Buoy-turret interface loads
- Installation analysis

Simulating Buoy Disconnect

Reconnect Loading

Spider Buoy Tow-out

Spider Buoy Installation

Spider Buoy Installation

Summary

- Model testing still plays an important role in the development of floating systems
 - input data for analysis
 - independent verification of analysis
 - concept development and evaluation
 - study complex phenomenon
- Integration of system analysis with a model test program optimizes the design of the system
- Development of new approach & techniques important for model testing of deepwater systems