ABS Seminar on Floating Production Installations and Facilities

FPSO Turret Mooring and Riser Systems for the Gulf of Mexico

Martin J. Krafft, Ph.D.

Sr. Research Engineer

R&D / Hydrodynamics Dept.

September 13-14, 2000

FPSO Functionality, Risk and Availability

- FPSO's provide similar functionality as existing FPS systems in GoM plus storage and offloading facilities which allow <u>direct</u> export to both local and foreign markets [...except dry trees and drilling, for now...]
- Risks associated with FPSO systems are no greater than for existing platforms: TLP, Spar, Semi [preliminary result of MMS CRA Study]
- "…FPSO based systems have higher 'availability' than any other FPS+Pipeline based systems…" [Petrobras].
 - If FPSO process facilities or production well has a fault, reserve storage can still be delivered to a shuttle tanker
 - If FPSO shuttle tankers are late or WOW, production can continue when excess storage capacity is available
 - If an FPS or well or pipeline has a fault, delivery to export line stops.

- Likely Characteristics of the First FPSO for the Gulf: (my predictions)
 - Large depth because of vast pipeline infrastructure in shallower water
 - > 1,000,000 bbl capacity: large field more economic in deep water
 - Internal turret because of large number of risers and harsh environment
 - Permanent system most economic for many risers / large field
 - Taut polyester anchor legs: rapidly gaining acceptance (e.g., Brazil)
 - Extensive use of steel pipe in riser system: presently the norm in GoM
 - Thermal insulation via Pipe-in-Pipe
 - Riser configuration that de-couples steel pipe from vessel wave motions

Early production system waiting on export pipeline may be exception

Turret Systems: Elegant Solution, Highly Functional

Provides Station Keeping

- primary method for station keeping (thruster assist can be added)
- restricts offsets to maintain riser system integrity

Allows 360 degree weathervaning capability

- reduces loads on mooring system
- reduces motions for riser system and process (roll)
- passive system can be unmanned during hurricanes

Platform for mooring and riser systems pull-in equipment

 Self contained pull-in systems require no additional support vessels after anchor leg/riser handoff to FPSO

Turret System: Elegant Solution, Highly Functional

Provides product transfer system

- Accommodates liquid and gas swivels and pig launching/receiving
- Turret manifold system can replace or augment subsea manifolding

Includes well safety, control and maintenance systems

- Contains emergency shutdown valves/controls
- Wellhead control umbilicals (electric/hydraulic/fiber optic)
- Gas lift and water injection for low pressure formations
- Chemical injection for wax/hydrate control
- Provides spare risers for well testing and round trip pigging

Turret Systems: Elegant Solution, Highly Functional

Drilling and work-over operations \Rightarrow future

 Specialized turret design allows simultaneous drilling, production and storage: FP<u>D</u>SO. Non-conventional vessel, conventional components.

Design Considerations

FMC SOFEC Floating Systems

Internal Vs. External Turret Systems

External Cantilevered Turret Systems

- ⇒ Applications in mild to moderate environments: West Africa, Southeast Asia, Middle East, South Pacific
- \Rightarrow Permanent systems (generally)
- \Rightarrow Small number of risers
- \Rightarrow Shallow to moderate water depth applications

Generally less costly than internal turrets

External Turret Systems

Yepco Red Sea, Yemen World's Largest FSO 436,000DWT=2,900,000BBL

PEMEX Cantarell, Gulf of Mexico World's 2nd Largest FSO 352,000DWT=2,300,000BBL

FMC EnergySystems FMC SOFEC Floating Systems

Existing External Turret Mooring System in Gulf of Mexico

PEMEX Campeche Bay FSO: 1998, MODEC Intl LLC

Internal Vs. External Turret Systems

Internal Turret Systems

- ⇒ Applications in moderate to harsh environments: Brazil, North Sea, North Atlantic, South China Sea, Gulf of Mexico
- \Rightarrow Large number of risers (generally)
- \Rightarrow Moderate to deep water applications
- \Rightarrow Permanent and disconnectable systems

Internal turret anchor legs easier to design: no interference with bow

Internal Turret Systems: Permanent or Disconnectable

PetroCanada - Terra Nova Newfoundland, Canada

FMC SOFEC Floating Systems

Permanent Vs. Disconnectable Turret Systems

Which is the best solution?

- Either approach could be acceptable depending on:
 - Regulatory requirements
 - Owner Company's approach to Risk
 - Environment
- Each approach has different:
 - CAPEX
 - OPEX
 - Availability
 - Risks

Permanent Vs. Disconnectable Turret Systems

Permanent Turret Systems

- ⇒ Higher production up-time: don't necessarily shutdown because of hurricane "threat", only if direct hit is immanent
- \Rightarrow Evacuation decision based on operator preference, not environment
- \Rightarrow Lower long-term OPEX
- \Rightarrow Less complex mechanical systems
- ⇒ Must withstand 100-yr hurricane environment

Typical Permanent Internal Turret System

Barracuda FPSO: Campos Basin 834m (2,700ft), 34 Risers

Swivel Stack (Product/Lift/Controls) Manifolds + Pig Launching/Receiving Emergency Shutdown Valves

Anchor Leg + Riser Pull-In Equipment

Bearing (only upper in this case)

Turret Shaft / Riser Guide Tubes

Chain Table (Hawse Pipes/Chain Supports)

6 Anchor Legs + 34 Risers

Permanent Vs. Disconnectable Turret Systems

Disconnectable Turret Systems

- \Rightarrow Potentially lower risk of hurricane damage
- \Rightarrow Requires full time marine certified crew
- \Rightarrow Requires maintenance of self propulsion system
- ⇒ More complex fluid transfer system and control / instrumentation for disconnect / reconnect
- ⇒ Not necessarily lower CAPEX than permanent turret system: depends on number of risers, required disconnect/reconnect times, safety features, etc.

Example: Terra Nova FPSO disconnects for icebergs, not 100-yr storm. In GOM, one might design a disconnectable system to withstand up to 100-yr storm, but disconnect for > 100-yr.

Disconnectable Turret Systems

Mooring and Riser System Design

Shallow water design

- \Rightarrow Vessel offsets = 30% to 40% of water depth: riser design challenge
- \Rightarrow Riser loads nearly insignificant for turret design
- \Rightarrow Anchor leg / riser interference is key design issue

Deep water design

- \Rightarrow Offsets = 10% to 20% of water depth: helps simplify riser design
- \Rightarrow Riser loads significant for turret design and total restoring force
- \Rightarrow Surge-drift damping contribution from anchor legs and risers is large
- \Rightarrow Current loads on anchor legs and risers can be large
- \Rightarrow VIV induced motions/loads on risers must be considered for fatigue
- :. Coupled analysis of mooring & risers is critical for deepwater

Comparison of FPSO Motions to Existing Platforms in the Gulf of Mexico

Comparison of Maximum Total Horizontal Offset

Non-FPSO Motions courtesy Shell and Deepstar

Comparison of FPSO Motions to Existing Platforms in the Gulf of Mexico

Comparison of Maximum Total Heave, Pitch, Vert. Accel.

FMC EnergySystems

FMC SOFEC Floating Systems

Non-FPSO Motions courtesy Shell and Deepstar

- Semi, Spar and TLP motions are "De-Tuned" from Waves (small waterplane area hull forms compared to FPSO)
 - Wave Periods: 4 to 20 seconds (95% energy)
 - Semi-Sub Natural Periods: 20 to 50 seconds (heave & pitch)
 - Spar/TLP Natural Periods: 30 to 150 seconds (heave & pitch)
 - Therefore dynamics are generally less severe than for FPSO
- Heave & Pitch Natural Periods for tanker: 8 to 12 seconds
- In GOM, FPSO will likely require a more "compliant" or "de-coupled" riser configuration compared to simple catenary or top tensioned vertical risers

FPSO Motion Reduction & Motion-Tolerant Riser Systems

- Hull Form Optimization:
- Utilize Oversized Hull:
- Thruster-Assisted Mooring: (may require manned platform for Hurricane)

- \Rightarrow minimize wave motions
- \Rightarrow reduce wave motions
- ⇒ smaller wave/vessel heading reduces motions & offsets,
- ⇒ turret closer to midships reduces wave motions

Taut Polyester Mooring:

- \Rightarrow reduce vessel offsets
- Compliant Riser Configurations: \Rightarrow e.g., Steel Lazy Wave
- Decoupled Riser Configurations: \Rightarrow e.g., TLR, FTB, Hybrid Tower

Offset Reduction Via Taut Polyester Mooring: 10% to 5%

Steel Lazy Wave Riser (compliant)

Distance Along Seabed (meters)

Typical Deepwater GoM FPSO Mooring & Riser System

3x3 Inverted Catenary Chain & Wire Mooring and Steel Lazy Wave Riser

TLR Riser System

Steel Lines De-Coupled from FPSO Motions

TLR Riser System

Steel Lines De-Coupled from FPSO Motions

Drastically Reduces Turret Loads

- TLR Riser System:
 - FPSO motions de-coupled using a submerged steel buoy supporting SCRs and flexible jumpers to the turret
 - Can accommodate a large number of risers
 - > De-coupling effective \Rightarrow buoy motions are small
 - SCR's not affected by the 100-year hurricane or fatigue environments
 - Proven technology, with standard fabrication/installation procedures
 - Recent DeepStar study concluded that TLR system is feasible in 3,000m depth and less costly than Steel Lazy Wave or Hybrid Riser Towers:

COST COMPARISON: (based on large, multiriser field development)

TLR	100%
Lazy Wave	120%
Hybrid Tower	145%

TLR Riser System

Steel Lines De-Coupled from FPSO Motions

SPM to FTB Riser System

Steel Lines De-Coupled from FPSO

SPM can be CALM or FPSO

SPM to FTB Riser System

Steel Lines De-Coupled from FPSO

Fluid Swivels Above Water

SPM to FTB Riser System

Steel Lines De-Coupled from FPSO

Product Swivels Above Water

SPM to FTB Riser System

FPSO-Based Field Development: present and future...

