Empirical Estimation of Probability Distribution of Extreme Responses of Turret Moored FPSOs

Presentation By:
Amir Izadparast

Authors:
Amir Izadparast
Arun Duggal
Background

Design Value

Extreme Statistics

Extreme Value Analysis

Sample Data

Limited Data

Complexity of data structure

Distribution Model

Numerical

Experimental

Full Scale

Non-linearity

Mixed Effects
Table of Content

• Non-linear Responses of Turret Moored FPSOs
• Probability Distributions
• Distribution Parameters
• Extreme Statistics
• Case Studies
• Results
• Concluding Remarks
Non-linear Responses of Turret Moored FPSOs

Mooring Leg Tension
- Windward
 - Low-Frequency
 - Wave Frequency
 - Total Tension
- Leeward
 - Low-Frequency
 - Wave Frequency
 - Total Tension

Vessel Offset
- Along the vessel length (X)
 - Low-Frequency
Sources of Non-linearity

- Mooring System Stiffness
- Loading Nature (low-drift forces, drag, etc.)
- Environmental Condition (steep waves)
- Damping
Probability Distributions

Normalized Random Variable \[\zeta = \frac{a - \mu_{\eta}}{\sigma_{\eta}} \]

<table>
<thead>
<tr>
<th>Model</th>
<th>Transformation</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Random Variable (narrow-banded)</td>
<td>(F_{\zeta_n}(x) = 1 - \exp\left(-\frac{x^2}{2}\right))</td>
<td>Rayleigh</td>
</tr>
<tr>
<td>(\zeta_n = \frac{\xi^2}{2})</td>
<td>(F_{\xi_n}(x) = 1 - \exp(-x))</td>
<td>Exponential</td>
</tr>
<tr>
<td>(\zeta_n = A\left(\frac{\xi^2}{2} + B\right))</td>
<td>(F_{\xi_n}(x) = 1 - \exp\left(-\left(\frac{x}{A} - B\right)\right))</td>
<td>Stansberg</td>
</tr>
<tr>
<td>Non-Linear Random Variable</td>
<td>(F_{\zeta_n}(x) = 1 - \exp\left(-\left(\frac{x - \rho}{\lambda}\right)^\kappa\right))</td>
<td>Weibull</td>
</tr>
<tr>
<td>(\zeta_n = \frac{\lambda}{2^{1/\kappa}}\xi^{2/\kappa} + \rho)</td>
<td>(F_{\zeta_n}(x) = 1 - \exp\left(-\left(\frac{x - \rho}{\lambda}\right)^\kappa\right))</td>
<td>Weibull</td>
</tr>
<tr>
<td>(\zeta_n = \alpha \zeta + \beta \xi^2 + \gamma)</td>
<td>(F_{\xi_n}(x) = 1 - \exp\left(-\frac{(\chi - \alpha)^2}{8\beta^2}\right))</td>
<td>3-Par Rayleigh</td>
</tr>
</tbody>
</table>

\[\chi = \left(\alpha^2 + 4\beta(x - \gamma)\right)^{1/2} \]
Distribution Parameters

<table>
<thead>
<tr>
<th>Model</th>
<th>Distribution</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Random Variable</td>
<td>Rayleigh</td>
<td>μ_η, σ_η</td>
</tr>
<tr>
<td>(narrow-banded)</td>
<td>Exponential</td>
<td>μ_η, σ_η</td>
</tr>
<tr>
<td>Non-Linear Random Variable</td>
<td>Stansberg</td>
<td>$\mu_\eta, \sigma_\eta, A, B$</td>
</tr>
<tr>
<td></td>
<td>Weibull</td>
<td>$\mu_\eta, \sigma_\eta, \kappa, \rho, \lambda$</td>
</tr>
<tr>
<td></td>
<td>3-Par Rayleigh</td>
<td>$\mu_\eta, \sigma_\eta, \alpha, \beta, \gamma$</td>
</tr>
</tbody>
</table>
Extreme Statistics

Ordered Value Statistics Theory
(N independent cycles):

Expected Maximum:

Asymptotic Distribution of Large N (Gumbel)

Number of Cycles (N)

Wave frequency Narrow-banded process \[N = \frac{T_{storm}}{T_z} \]

Low frequency Non-narrow-banded– Correlation time - Stansberg’s formula \[\tau = \frac{1}{2\omega} \]

\(\omega \) bandwidth of the spectrum

Combined Process Difficult to estimate Number of observed cycles
Case Studies: General Info

Deepwater System

Water depth (m) ~2000m
Area West Africa
100Yr Condition Hs = 4.5m, Tp = 17sec, Ws = 6.3m/sec
Mooring System 3G*4L Taut mooring legs
Mooring Legs Chain-Polyester-Chain

Shallow-water System

Water depth (m) ~45m
Area South East Asia
100Yr Condition Hs = 10m, Tp = 16sec, Ws = 32m/sec
Mooring System 4G*3L Catenary mooring legs
Mooring Legs Chain-Heavy Chain-Chain
Case Studies: Response Characteristics

Deepwater System

Shallow-water System
Case Studies: Response Characteristics

![Graph showing response characteristics for shallow water and deepwater](image)

- **X/\(\mu_X\)**
- **\(F_X/\mu_FX\)**

Legend:
- Shallow Water
- Deepwater
Results: Wave-Frequency

Deepwater windward

Deepwater leeward

Shallow-water windward

Shallow-water leeward

\[P = (1 - u) \]
Results: Low-Frequency

Deepwater windward

Shallow-water windward

Deepwater leeward

Shallow-water leeward

\[P = (1 - u) \]
Results: Total

Deepwater windward

Deepwater leeward

Shallow-water windward

Shallow-water leeward
Results: Extreme Statistics

<table>
<thead>
<tr>
<th>Model</th>
<th>Windward</th>
<th>Leeward</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wave Freq.</td>
<td>Low Freq.</td>
</tr>
<tr>
<td>Sample</td>
<td>4.2</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>(5.4 - 3.3)</td>
<td>(3.5 - 2.8)</td>
</tr>
<tr>
<td>Rayleigh</td>
<td>3.8</td>
<td>2.7</td>
</tr>
<tr>
<td>Exponential</td>
<td>7.1</td>
<td>3.8</td>
</tr>
<tr>
<td>3-Par. Rayleigh</td>
<td>3.8</td>
<td>3.3</td>
</tr>
<tr>
<td>3-Par. Weibull</td>
<td>3.9</td>
<td>3.1</td>
</tr>
<tr>
<td>Stansberg Exp.</td>
<td>--</td>
<td>3.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Windward</th>
<th>Leeward</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wave Freq.</td>
<td>Low Freq.</td>
</tr>
<tr>
<td>Sample</td>
<td>5.8</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>(7.3 - 4.9)</td>
<td>(4.5 - 3.6)</td>
</tr>
<tr>
<td>Rayleigh</td>
<td>3.8</td>
<td>3.2</td>
</tr>
<tr>
<td>Exponential</td>
<td>7.3</td>
<td>5.2</td>
</tr>
<tr>
<td>3-Par. Rayleigh</td>
<td>6.3</td>
<td>4.7</td>
</tr>
<tr>
<td>3-Par. Weibull</td>
<td>5.6</td>
<td>4.4</td>
</tr>
<tr>
<td>Stansberg Exp.</td>
<td>--</td>
<td>4.5</td>
</tr>
</tbody>
</table>
Concluding Remarks

- The probability distribution of mooring leg tension and vessel offset in extreme environmental condition were studied.
- Two case studies of shallow water and deepwater turret moored FPSOs are considered.
- The characteristics of probability distribution of wave-frequency, low-frequency, and the combined tension are studied.
- The probability distributions of tension in the windward and leeward lines are studied.
- The performance of widely used distribution models as well as the three-parameter Rayleigh distribution model is evaluated over the experimental data.
- The effect of distribution model on the predicted extreme values is discussed.
Thank You!