Deep Water Turret-Moored FPSO for West Africa

Marty Krafft, Ph.D.
Lead Research Engineer
R&D / Hydrodynamics Dept.

March 30, 2012
FSO/FPSO MOORING SYSTEMS – 46 Completed; 3 Under Design/Construction

- Internal Turret
 - Permanent & Disconnectable

- External Turret

- Spread Mooring

- Tower Yoke (Shallow Water)
SOFEC FPSO Mooring Project Locations
Western Hemisphere
I really like my job!...

• 22 (+ 3) years on the job as mooring and riser designer
 (I count the last 3 years of OE grad school at A&M doing what you students have been doing all year – applied design and analysis)

• Involved in All Mooring-Related Project Phases
 – Conceptual design and preliminary analysis (FEED)
 – Detailed design and class approvals, schedule, budget, project sanctioning (reality sets in)
 – Model Testing (the moment of “truth” for the Ocean Engineer)
 – Specifications and Construction (what it really costs)
 – Offshore installation (it looked good on paper!)
I Really like my job!...

- Mooring System Project Life-Cycle – from concept to installation
SOFEC Turret Mooring Systems: 33 to date

- SOFEC’s Turret Mooring Design and Operational Experience from 1988 - 2012
 - 3 Permanent Internal Turret Mooring Systems
 - 5 Internal Disconnectable Turret Mooring Systems
 - 25 External Turret Mooring Systems (industry trend for turret types)

- Overall 260 years of operational life
 - Longest duration: 24 years on site (Safer FSO, Yemen, 1988)
 - Shortest duration: 24 days (BP PSVM FPSO, Angola, March 6 2012)
FPSOs: Turret Vs Spread Moor

46 FSO/FPSOs Completed; 3 Under Construction

External Turret: Tandem and Side-By-Side

Internal Turret: Tandem

Spread: Tandem Bow or Stern

External Turret: Tandem
FPSOs: Turret Vs Spread Moor

Comparative Summary of Turret Moored and Spread Moored FPSO Systems

<table>
<thead>
<tr>
<th></th>
<th>Turret-Moored</th>
<th>Spread-Moored</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vessel Orientation</td>
<td>360 degree weather vaning</td>
<td>Fixed orientation, can impact flare</td>
</tr>
<tr>
<td>Environment</td>
<td>Mild to extreme, directional to spread</td>
<td>Mild to moderate, uni- to fairly directional</td>
</tr>
<tr>
<td>Field Layout</td>
<td>Fairly adaptable, partial to distributed flowline arrangements</td>
<td>Prefers flowline arrangement to approach beam-on</td>
</tr>
<tr>
<td>Riser Number & Arrangement</td>
<td>Requires commitment, moderate expansion capability</td>
<td>Can be designed for flexibility, additional tie-ins</td>
</tr>
<tr>
<td>Riser Systems</td>
<td>Location of turret (bow) requires robust riser design</td>
<td>Adapts to various riser systems, combinations of various types</td>
</tr>
<tr>
<td>Stationkeeping Performance</td>
<td>Number of anchor legs, offsets minimized</td>
<td>Larger number of anchor legs, offsets variable</td>
</tr>
<tr>
<td>Vessel Motions</td>
<td>Weather vaning capability reduces motions</td>
<td>Dependent on relative vessel/environment directionality</td>
</tr>
<tr>
<td>Vessel Arrangement</td>
<td>Turret provides "compact" load and fluid transfer system</td>
<td>Components spread on deck, requires extensive interfaces</td>
</tr>
<tr>
<td>Offloading Performance</td>
<td>FPSO typically aligned with mean environment</td>
<td>Dependent on vessel/environment orientation</td>
</tr>
</tbody>
</table>
FPSOs: Turret Vs Spread Moor

Offloading Systems
Offloading Operability, Offloading Operability, Offloading Operability

(How do we get the money oil to shore as efficiently as possible?)

- **Tandem Offloading**
 - From bow or stern on Spread Moor
 - From stern only on Turret Moor

- **Side-by-Side**
 - Turret or Spread, but increased risk of vessel collision often kills this option
 - Reduced environment compared to tandem

- **Remote (Satellite) Offloading from Buoy**
 - Offers best uptime for large, high production, deep water fields.
 - Lowest risk of collision
FPSOs: Turret Vs Spread Moor

Production Rate Vs Offloading System

- **< 50k BPD + 1M Barrel Offload Parcel Every 20 days**
 - Spread Moor + Tandem Offload (bow and stern)
 - Tandem offloading from spread moored vessel possible especially in West Africa and Brazil

- **50k – 80k BPD**
 - Gray Area.

- **80k – 150k+ BPD (BP PSVM FPSO External Turret, 157kBPD)**
 - Turret with tandem offloading is usually the best solution.

- **175k – 300k+ BPD**
 - Turret or Spread Moor each with Remote, Deep Water Offloading Buoy

- **All Ultra-Large Fields in WA use Spread Moor + Remote DW CALM Buoy**
Internal Vs. External Turret Systems

External Cantilevered Turret Systems: most popular

⇒ Applications in mild to moderate environments:
 West Africa, Brazil, Southeast Asia, Middle East, South Pacific
⇒ Permanent systems (generally)
⇒ Smaller number of risers
⇒ Shallow to deep water depth applications

Generally less costly than internal turrets, but not ideal for large, deep water fields in the Gulf of Mexico
BP Angola PSVM FPSO External Turret

Characteristics

⇒ MODEC Int. LLC 300,000DWT VLCC Conversion: one of the world's largest FPSO's
⇒ Approx. conversion cost of $1.5B compared to $2.0+B new-build
⇒ 1.8Mbbls storage ($216,000,000)
⇒ 157,000 barrels of oil per day ($18,800,000/day) and 245 million cubic feet gas per day
⇒ 8.1 million man-hours for construction
⇒ 20,000+ tonnes of topsides equipment
⇒ One of the biggest external turrets ever constructed: 3,000+ tonnes
⇒ 2,030m (6,660ft) water depth, 3 x 4 grouped, taut poly anchor legs
⇒ 15 Single Leg Hybrid Risers (SLHR) and Lazy Wave umbilicals
⇒ Tandem Offloading
BP Angola PSVM FPSO External Turret

Mooring System Design Criteria

⇒ Maximum intact/damaged offset = 5% / 6% of water depth
⇒ 1-line missing = “intact”, 2-lines missing = “damaged” → (redundancy: 3 x 4 mooring system required instead of 3 x 3)
⇒ No contact with SLHR risers or Lazy-Wave umbilicals
⇒ Wire rope or polyester rope allowed (no poly rope on seabed)
⇒ Rope segment replaceable → subsea connector
⇒ Extremely soft soil → low aspect ratio suction pile
⇒ 20-yr design life
⇒ Coupled Mooring+Riser Analysis
BP Angola PSVM FPSO External Turret

Environmental Design Criteria

⇒ 2.0+ m/s (3.9kts) Congo River Outflow
Environmental Design Criteria

⇒ Squall-dominated mooring loads and offsets → time-domain analysis
100-yr squall wind 28 m/s (55kts)
BP Angola PSVM FPSO External Turret

Environmental Design Criteria

⇒ Swell-dominated bearing inertia loads → frequency-domain analysis

100-yr Swell $H_s = 4.5m$
BP Angola PSVM FPSO External Turret

Environmental Design Criteria

⇒ Fatigue-dominated chain sizing
⇒ Out-of-Plane bending (OPB) fatigue ⇒ Dual Axis Chain Supports
BP Angola PSVM FPSO External Turret

Mooring Components

⇒ 3 x 4 taut polyester mooring system
⇒ 7.3m single piece, 3 row roller bearing
⇒ Dual axis chain supports
⇒ 98mm studless top chain, 130 meters (large diameter for OPB)
⇒ 414 tonne MBL polyester rope, 3,000 meters
 (twice the distance between Rec Center and OE building)
⇒ 76mm studless bottom chain
⇒ 500 tonnes First Subsea Ballgrab connector
⇒ 4m x 17m suction pile, 66 tonnes
Mooring Components

⇒ 3 x 4 taut polyester mooring system
BP Angola PSVM FPSO: 2,030m depth
BP Angola PSVM FPSO: 2,030m depth
BP Angola PSVM FPSO : 2,030m depth
BP Angola PSVM FPSO: 2,030m depth
BP Angola PSVM FPSO External Turret

Mooring Components

⇒ Dual axis chain supports, 5.4m long. Reduces OPB on top chain.
BP Angola PSVM FPSO External Turret

Mooring Components

⇒ Over-boarding of male Ballgrab and bottom chain
BP Angola PSVM FPSO External Turret

Mooring Components

⇒ Over-boarding of bottom chain and poly rope
 (links painted to ensure no twist during deployment)
BP Angola PSVM FPSO External Turret

Mooring Components

⇒ Ball Grab Subsea Connector and Suction Pile
BP Angola PSVM FPSO External Turret

Mooring Components

⇒ Polyester Rope

• Not originally intended to touch the seabed (soil ingress concerns)
• Sand/Soil filter capable of blocking 5 micron particles (typical bacteria size is on the order of 10 micron)
• Project delay issues resulted in pre-deployment and temporary abandonment of poly on seabed.
• However, pre-stretching of polyester made this very light rope (2kg/m wet) stiff in bending and difficult to lay on the seabed without kinking (first, pre-streched leg took 24 hours to lay down cleanly). Pre-stretch procedure was eliminated for remaining legs, and subsequent poly laydown went very quickly.
BP Angola PSVM FPSO External Turret

Polyester Rope Laydown: difficulty with pre-stretched rope
BP Angola PSVM FPSO External Turret

Mooring Leg Hookup: EMAS *Boa Deep C* Handing Off Leg to FPSO
BP Angola PSVM FPSO External Turret

Mooring Leg Hookup

⇒ riggers are amazing at fixing problems!
BP Angola PSVM FPSO External Turret

Mooring Leg Hookup

⇒First leg hooked up!
Mooring Leg Tensioning

- Extra top chain length is provided so that initial installation loads are low: initial hookup to first link with long wire rope.
- Final tensioning performed with a short, higher strength synthetic pull-in rope.
- Chain support angles are measured simultaneously with turret position.
- Measured angles and turret position are used to calibrate numerical model (OrcaFlex). Length of polyester rope in model adjusted to match measured angles (exact length of rope is not known ahead of time as the rope experiences varying constructional stretch and creep during installation and handling).
- Tensioning operations conducted in 3 stages, with model continually being re-calibrated for poly constructional stretch and creep.
BP Angola PSVM FPSO External Turret

Mooring Tensioning

⇒ DGPS time history of turret position during top angle measurements
BP Angola PSVM FPSO External Turret

Mooring Tensioning

→ Measured angles Vs. turret position:

<table>
<thead>
<tr>
<th>Leg No.</th>
<th>Time</th>
<th>Turret Position</th>
<th>Top Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>North</td>
<td>East</td>
</tr>
<tr>
<td>1</td>
<td>12:28:00</td>
<td>3.3</td>
<td>4.0</td>
</tr>
<tr>
<td>2</td>
<td>12:30:00</td>
<td>2.6</td>
<td>3.9</td>
</tr>
<tr>
<td>3</td>
<td>12:33:00</td>
<td>2.9</td>
<td>4.3</td>
</tr>
<tr>
<td>4</td>
<td>12:35:00</td>
<td>3.7</td>
<td>3.9</td>
</tr>
<tr>
<td>5</td>
<td>12:37:30</td>
<td>2.3</td>
<td>3.8</td>
</tr>
<tr>
<td>6</td>
<td>12:39:30</td>
<td>2.9</td>
<td>3.8</td>
</tr>
<tr>
<td>7</td>
<td>12:41:30</td>
<td>2.7</td>
<td>3.9</td>
</tr>
<tr>
<td>8</td>
<td>12:43:30</td>
<td>4.3</td>
<td>3.6</td>
</tr>
<tr>
<td>9</td>
<td>12:47:15</td>
<td>2.8</td>
<td>4.1</td>
</tr>
<tr>
<td>10</td>
<td>12:50:00</td>
<td>4.3</td>
<td>3.7</td>
</tr>
<tr>
<td>11</td>
<td>12:51:30</td>
<td>3.2</td>
<td>4.8</td>
</tr>
<tr>
<td>12</td>
<td>12:54:45</td>
<td>2.5</td>
<td>4.4</td>
</tr>
</tbody>
</table>

| | average | 3.1 | 4.0 | | |
| | target | 6.1 | 6.2 | | |
BP Angola PSVM FPSO External Turret

Mooring Tensioning

⇒ As-Built Turret Position
(within 0.2% of water depth)

<table>
<thead>
<tr>
<th>Turret Position</th>
<th>North (x)</th>
<th>East (y)</th>
<th>XY</th>
</tr>
</thead>
<tbody>
<tr>
<td>OF Model: no env</td>
<td>4.1</td>
<td>3.5</td>
<td>5.4</td>
</tr>
<tr>
<td>OF Model: with env</td>
<td>-0.2</td>
<td>4.1</td>
<td>4.1</td>
</tr>
<tr>
<td>target position no risers</td>
<td>6.1</td>
<td>6.2</td>
<td>8.7</td>
</tr>
<tr>
<td>measured position no risers</td>
<td>2.7</td>
<td>4.1</td>
<td>5.0</td>
</tr>
<tr>
<td>target position with risers</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Resultant Riser Load = 37 tonnes toward 229deg
BP PVSM External Turret Loaded out from MMHE 3 Nov 2010
BP Angola PSVM FPSO External Turret
BP Angola PSVM FPSO External Turret – waiting on risers - thanks